Computers and Operations Research 98 (2018) 127-136

Contents lists available at ScienceDirect

omputers &
ns Research

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Mathematical programming formulations for the efficient solution of)
the k-sum approval voting problem e

Diego Ponce?, Justo Puerto?, Federica Ricca®, Andrea Scozzari®*

2IMUS and Departamento de Estadistica e Investigacion Operativa, Universidad de Sevilla, Spain
b Universita di Roma, La Sapienza, Italy
¢ Universita degli Studi Niccolo Cusano, Roma, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 24 July 2017
Revised 27 March 2018
Accepted 14 May 2018
Available online 24 May 2018

In this paper we address the problem of electing a committee among a set of m candidates on the basis
of the preferences of a set of n voters. We consider the approval voting method in which each voter can
approve as many candidates as he likes by expressing a preference profile (boolean m-vector). In order to
elect a committee, a voting rule must be established to ‘transform’ the n voters’ profiles into a winning
committee. The problem is widely studied in voting theory; for a variety of voting rules the problem
was shown to be computationally difficult and approximation algorithms and heuristic techniques were
proposed in the literature. In this paper we follow an Ordered Weighted Averaging approach and study
the k-sum approval voting (optimization) problem in the general case 1<k <n. For this problem, we
provide different mathematical programming formulations that allow us to solve it in an exact solution
framework. We provide computational results showing that our approach is efficient for medium size test
problems (n up to 200, m up to 60), since in all tested cases it was able to find the exact optimal solution

Keywords:

Approval voting

Ordered Weighted Averaging (OWA)
k-sum optimization problems

in very short computational times.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A typical problem in collective decision making is to select one
(or more) winners among a set of m candidates on the basis of the
preferences of a set of n voters. This situation arises in many dif-
ferent real-life contexts, as in sport competitions to select the set
of winners, or in political elections, and, more in general, when-
ever a committee must be formed from a larger set of candidates
(for example, in companies or universities). For m > 1 the problem
is a multi-winner one and the ballot gives the possibility to each
voter to express his preference for each single candidate by approv-
ing or not his nomination. This means that voters can approve as
many candidates as they like by expressing their preference pro-
file (approval balloting). Approval voting is a well-known method
used for this kind of multi-winner elections. The method, intro-
duced by Brams and Fishburn in 1978 Brams and Fishburn (1978),
was widely studied in the literature on voting theory (see Brams
and Fishburn, 2005; Brams and Fishburn, 2007; Laslier and Sanver,
2010; Menezes et al., 2016; Rapoport and Felsenthal, 1990; Taylor
and Pacelli, 2008 and the references therein).

* Corresponding author.
E-mail addresses: dponce@us.es (D. Ponce), puerto@us.es (J. Puerto),
federica.ricca@uniromal.it (F. Ricca), andrea.scozzari@unicusano.it (A. Scozzari).

https://doi.org/10.1016/j.cor.2018.05.014
0305-0548/© 2018 Elsevier Ltd. All rights reserved.

Consider a set N of n voters and a set A of m candidates. For
each i, P, = (pj1,- ... Dij, - - -» Pim) denotes the preference profile of
voter i which corresponds to a boolean m-vector whose generic el-
ement p;; is equal to 1 if candidate j is approved by i and equal to 0
otherwise. Therefore, in the problem input we have N, A and a set
P of preference profiles of the voters, so that a generic instance is
denoted by (N, A, P). The problem is to find in A the “best” subset
of candidates (winning or elected committee), according to a certain
voting rule (criterion). A committee is represented by a boolean
m-vector X = (X1, ...,Xj,...,Xm), in which x; =1 means that can-
didate j is in the committee, and x; = 0 otherwise.

When we have a single-winner election, the typical voting rule
is the one that elects the most approved candidate, i.e., the one
who received the largest number of votes (with a tie-breaking rule
if needed).

For multi-winner elections, several voting rules have been pro-
posed for approval voting (Kilgour, 2010). For a majority of the
voting rules computing a winning committee is a difficult prob-
lem (Aziz et al., 2015; Fishburn and Pekec, 2004). Among the
many, there is a class of rules known as centralization procedures
that was widely studied in the literature. Two rules in this class
were mainly analyzed, namely, one based on the minisum crite-
rion and one on the minimax criterion. According to the first crite-
rion, the winning committee is the one that minimizes the sum

https://doi.org/10.1016/j.cor.2018.05.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2018.05.014&domain=pdf
mailto:dponce@us.es
mailto:puerto@us.es
mailto:federica.ricca@uniroma1.it
mailto:andrea.scozzari@unicusano.it
https://doi.org/10.1016/j.cor.2018.05.014

128 D. Ponce et al./Computers and Operations Research 98 (2018) 127-136

of the n Hamming distances to the preferences profiles of the
n voters. The second criterion selects the committee that min-
imizes the maximum of its Hamming distances to the voters’
profiles. In Amanatidis et al. (2015), a new family of rules has
been proposed to generalize minisum and minimax which make
use of Ordered Weighted Averaging operators (OWA) introduced by
Yager (1988) (see also Barrot et al., 2017). In this setting, a vector
of n weights W = (wq,...,wy) is fixed; then the n distances be-
tween voters’ profiles and the decision vector (committee) are or-
dered from largest to smallest and they are weighted with the cor-
responding weight in W. Clearly, when W = (1,0,...,0) we have
the minimax criterion, while for W = (1,..., 1) we have the min-
isum criterion. We observe that in Yager (1988) the weights are
normalized w.r.t. n. Since we do not normalize, the minisum crite-
rion in our case is given by W = (1,1,...,1). Many other criteria
can be defined in this way by tuning the weights in W according
to the specific goal of the application. An interesting class of prob-
lems arises when vector W has only 0/1 values and more than one
weight is equal to 1. Suppose to have k elements equal to 1; when
they are in the first k positions of the vector of weights they refer
to the k largest distances, thus providing what is known in the lit-
erature as the k-sum approach already applied to many other com-
binatorial problems (Nickel and Puerto, 2006). A similar problem
arises when we have elements equal to 1 in the last h positions
of the weighting vector (h smallest distances). Both problems have
meaningful applications in approval voting.

In this paper we study the problem of selecting a committee by
applying approval voting and basing on a k-sum objective function
(k-sum approval voting problems). In Amanatidis et al. (2015) it
is proved that for 1 <k <n the problem is NP-hard and, therefore,
an approximation algorithm is provided to get feasible solutions
with guaranteed bounds. On the other hand, the same authors pro-
vide polynomial time exact algorithms for some families of weight-
ing vectors that consider the h smallest distances (h fixed). In the
present paper we study these kind of problems under a mathe-
matical programming viewpoint, providing different exact formu-
lations for the k-sum approval voting problem, with 1 <k <n. We
then exploit these formulations to develop exact solution proce-
dures that may be used to solve medium size problems at opti-
mality, or to efficiently find a sub-optimal solution when the size
of the problem is too large. In approval voting problems we con-
sider as small an instance with n <100 and m < 30. A medium size
instance has n<[100, 200] and m €[30, 60]. Medium size problems
fit committee elections in universities or companies. On the other
hand, large size problems arise in political elections where typi-
cally n>>200. To develop such formulations we rely on the gen-
eral approach for solving k-sum optimization problems provided
in Ogryczak and Tamir (2003) and in Puerto et al. (2016), as well
as, on theoretical results in Blanco et al. (2014). We experimen-
tally study the solution of our k-sum approval voting problem by
using the above formulations in a Branch & Bound framework. All
formulations were tested on a variety of medium size randomly
generated test problems, in all cases providing the exact optimum
in very short times. In view of this, our formulations also provide
an efficient tool to certify optimality of a solution.

We apply the mathematical programming approach also when
the h smallest distances are considered in the objective function
(anti-h-sum approval voting problem). We formulate this problem
as a polynomial sequence of linear programs, thus providing a for-
mal proof that it can be solved in polynomial time as already es-
tablished in Amanatidis et al. (2015).

The paper is organized as follows. Section 2 formally defines
the problem and sets the notation. Section 3 presents our math-
ematical programming formulations for the k-sum approval vot-
ing problem minimizing the sum of the k largest Hamming dis-
tances. We have developed two different types of formulations.

The first ones based on an exponential number of constraints that
can be separated efficiently (see Section 3.1) and the second ones
based on compact representations of k-sums (see Section 3.2).
In Section 4 we describe how all the above mentioned formula-
tions can be strengthened with variable fixing and valid inequal-
ities. The computational experiments are reported in Section 5,
where we compare the performance of the formulations on two
different sets of instances. Our results show that these formula-
tions are able to solve the problem for instances of medium and
large sizes. Next, Section 6 outlines how to proceed for the anti-
h-sum approval voting problem which consists of minimizing the
sum of the h smallest distances with respect to a given profile
Amanatidis et al. (2015). Finally, Section 7 contains our concluding
remarks.

2. Problem definition and basic results

Consider an instance of the k-sum approval voting problem (N,
A, P). For a given committee x (i.e., a boolean vector x of length m)
we compute the Hamming distance between x and each voter pro-
file P;, i=1,...,n, thus obtaining the Hamming distance d;(x) for
each voter i. Following the OWA approach, we consider a family of
functions, parameterized by a vector of length n that maps a vec-
tor of distances (d;(x),...,dn(x)) to an aggregated function D(x)
(OWA score). The k-sum approval voting problem can be stated as
follows: select a committee x minimizing the OWA score of Ham-
ming distances D(x). In this paper we study two families of k-sum
approval voting problems. The first computes the OWA score using
the following vector of weights:

Wk =(1,...,1,0,...,0),

where k refers to the number of ones in the first k positions of
vector W (electing a committee that minimizes the sum of the k
largest Hamming distances).

The second family uses the following weighting vector:

M(n—h)=(0,...,0,1,....1),

where h weights equal to 1 are in the last h positions (electing
a committee that minimizes the sum of the h smallest Hamming
distances). Clearly, the cases k = h =n are the same, and, in this
case, we have the same OWA problem, that, in fact, corresponds to
the minisum problem.

In Brams et al. (2007) (see Proposition 4) the authors account
for why the minisum problem is polynomially solvable, but they
do not provide a formal proof. The key idea is that the minisum
winning committee (also under a cardinality constraint on the size
of the committee fixed to C), corresponds to a set of candidates
receiving the most votes. In the following, we illustrate how the
result in Brams et al. (2007) can be formally obtained by exploiting
Linear Programming (LP). Denote by y; the number of votes for
candidate j, j=1,..., m, we have

n
Vi= Z Dij-
i=1

Consider the case when the size of the committee is not given. A
valid formulation can be obtained basing on the following obser-
vation (see Brams et al., 2007): when k = n, all voters’ Hamming
distances (d;(x),...,dn(x)) are considered in the objective func-
tion, so that a candidate j is elected if the number of votes for him
v is greater than n — y;. This leads to the following model

min Z(n - Yj)xj+ Z vi(1=x))

j=1 j=1
s.t. xe{0,1}™

D. Ponce et al./Computers and Operations Research 98 (2018) 127-136 129

Since the objective function is linear, the optimal solution is at-
tained at some vertex of the m-dimensional hypercube. Then, we
can relax the binary variables of the above problem obtaining the
LP model

m m

min Y " (n—yp)x;+ Yy (1-x))
= i

st. O0<x; <1, j=1,....n

As in Brams et al. (2007), we can also consider a constraint on the
size C of the committee, obtaining the following model

m m
min 3 (n—yj)x;j+ 3 vj(1=%;)
j=1 Jj=1

S.t. Xj= C

n

j=1
x e {0,1}m (1)

Since the constraint matrix is Totally Unimodular (TU), the problem
can be still solved by Linear Programming techniques, after relax-
ing the binary constraints on the variables x (see Nemhauser and
Wolsey, 1988). This definitely shows that the minisum case is poly-
nomially solvable.

When k <n the k-sum approval voting problem is NP-hard (see
Amanatidis et al., 2015; Frances and Litman, 1997). This justifies
the idea of studying efficient solution methods for the general
problem resorting to heuristic approaches, or approximation algo-
rithms (Byrka and Sornat, 2014; Caragiannis et al., 2010; LeGrand
et al., 2007; Li et al., 2002). In the following sections we present
a number of exact mathematical programming formulations of the
general k-sum approval voting problem with 1<k <n that can be
efficiently solved in a Branch & Bound framework enriched by the
use of valid inequalities.

A similar problem arises when we consider the weighting vec-
tor M(n — h) with 1 <h <n. The computational complexity of this
problem was established in Amanatidis et al. (2015) when h is not
part of the input of the problem. Even if it is shown that the prob-
lem is polynomially solvable in this case, to the best of our knowl-
edge, the computational complexity is still open when the problem
is formulated with a general h. We discuss this problem in the final
sections of the paper.

3. Mathematical programming formulations for the approval
voting problem

Consider now W(k) with 1<k <n. Let x be a committee, the
Hamming distance, d;(x), between the profile P; of voter i and x is
given by

m
di(x) =Y Ipij —x;l.
=1

Since both P;, i=1,...,n, and x are boolean vectors, we can
exploit the fact that the Hamming distance between two boolean
vectors corresponds to the vector of the Exclusive-or between the
vector elements (Givant and Halmos, 2009). Thus the Hamming
distance d;(x) can be rewritten as follows

m
dix) =Y z;
j=1
Zij Z Xj = PijXj

Zij =z Pij — PijX;j

j=1,...,m
j=1,...,m (2)

We can also replace the two inequalities above by the equiv-
alent representation: z;; > x;(1 — p;;) + p;;(1 —x;). This gives rise

to:
m
d; (%) :Zzij (3)
j=1
z,'jzxj(l—p,-j)—i-p,»j(l—xj), j=1,...,m. (4)
Let oy : {1,...,n} — {1,...,n} be an ordering function that, for

a given x, provides a permutation of the voters’ indices such
that dg, (1)(X) = dg,2) (%) = ... = dg, (n) (). For the given permuta-
tion the problem of electing a committee that minimizes the sum
of the k largest distances can be formulated as follows:

k
min Z do-x(m (X)
h=1

xe{0,1}™. (5)

Following the approach in Blanco et al. (2014), the above prob-
lem can be restated as:

Xer{r(lj}%m(max{dg(x) |Sc{1,....n}.|S| =k}). (6)
where ds(x) = Y ;s Z}”:] |pij — x;|, is the Hamming distance of the
set of voters in S to the committee represented by x.

In general k-sum problems, the expression of the contribution
of a subset of voters to the election of a candidate can be also writ-
ten by means of the y; values, namely the number of voters ap-
proving a given candidate j. For this purpose, let us introduce some
necessary notation. More formally, let S be a set of voters such that
IS| = k. We define y;(S) =)i pij, as the number of votes of can-
didate j by the voters in S. For a given x and S such that |S| =k,
we can express:

ds(x) = > max{y;(S)(1 - x;), (k — ;(S))x;} (7)
j=1
=Yy (1 —x) + > (k= y;(5)x;, 8)
j=1 j=1

i.e., the Hamming score of the k voters in S computed w.r.t. a given
solution x. Notice that by means of expressions (7) and (8) the
score is well calculated even when the solution is not optimal.
Based on these expressions, in the following sections we obtain al-
ternative valid formulations of the k-sum approval voting problem
that we then test experimentally in Section 5.

3.1. Valid formulations based on subsets of size k

In this section we propose a first valid formulation for our k-
sum approval voting problem which is based on expression (7).
We formulate it in the following theorem where, for the sake of
simplicity, we avoid specifying S c {1,...,n} when not necessary.

Theorem 1. An optimal solution of the k-sum approval voting prob-
lem can be obtained solving the following integer programming prob-
lem.

min v 9)
s.t.zij > pij(1 —x;) Vi, j (10)

Zjj = (] — p,'j)Xj Vl,] (11)
m

Y > zy<v VS:|S|=k (12)
j=1 ieS

130 D. Ponce et al./Computers and Operations Research 98 (2018) 127-136

x e {0, 1}™. (13)
Proof. Consider formulation (6) and formula (7), the problem can
be written as
xer(%i{l)m (max {Zmax{(k— YiNx;. v (A —xpHSc{1,....n}, S| = k})

) =

Defining variables zg; for all Sc {1, ..., n}, |S| =k, and all j, this is
equivalent to

min v (14)

s.t. zg; = (S (A —x;) Vj, VS:|S| =k (15)
zsj > (k—y;(5))x; Vj, VS:|S| =k (16)
m
Y zgi<v VS:|S| =k (17)
j=1
x e {0, 1}™. (18)
Next, we can define variables z; for all i=1,...,n and for all j =
1,...,m and disaggregate each variable zs; = } ;s z;;, which results
in
min v (19)
st Yz = y(S)(1—x;) Vi, VS:|S| =k (20)
ieS
>z = (k= y;(5)x; Vi, VSIS =k (21)
ieS
m
Y zi<v VS:|S| =k (22)
j=1 ieS
x e {0, 1}™. (23)

We observe that constraints (20) and (21) for all j and S such that
|S| =k, can be replaced by the following disaggregated version

min v
S.t. zjj > pij(l —Xj) Vi, j
zij> (1 —pij)x; Vi, j
m
Y ¥ zj<v VS:|S|=k
j=1 ieS
xe{0,1}™.
This concludes the proof. O

Example 1. We illustrate the above approach reformulating the
minimax approval voting problem (k= 1) within this general
framework.

min v
zij > pij(1 —xj) Vi, j
zij > (1 = pij)x; Vi, j

m
ZZU <vVi
j=1

x e {0,1)™. (24)

In the following, we develop a second valid formulation for
the general k-sum approval voting problem applying (6) but using
(8) to represent the Hamming distance instead of (7).

Theorem 2. The following formulation provides a valid representation
of the k-sum approval voting problem.

min v (25)

st Y (k=yiSNxj+ > v —x) <v VS:|S|=k (26)

j=1 j=1

xe {0, 1} (27)

Proof. Applying in formula (6) the representation (8) instead of
(7), the proof follows similarly to that of Theorem 1. O

Since both formulations (9)-(13) and (25)-(27) have an expo-
nential number of constraints, we propose here two different ap-
proaches to solve these two models.

A first approach is based on formulation (9)-(13). Let us assume
that we embed that formulation in a Branch and Bound scheme

and let (X, Z, 7)) be the current solution in a node of this Branch &
Bound tree.

Procedure for (9)-(13)
o Compute f;:= Z;-":l Z;; for every i and choose the k

largest. Determine S according to the k largest #; for i e

{1,....,n}.
o Check if }°; ¢f; > D. In the affirmative case, we need to

add the following constraint related to such §

m
DY zi=w. (28)
ie§ Jj=1
Otherwise, i.e.,, when the answer to the test is no, the
current solution is feasible in the current node. There-
fore, a valid description of the problem was already avail-
able and no more inequalities have to be added.

A similar scheme can be applied to Problem (25)-(27). Let (X, 1)
be a given feasible solution in a node of its Branch & Bound tree.

Procedure for (25)-(27)

o Compute 7 := ij:1 |%; — p;j|, for all i=1,...,n. Deter-
mine S according to the k largest values of 7; for ie
{1,..., n}.

o Check whether), ¢f; > D. In the affirmative case we
need to add the following inequality which is a valid cut
that separates (X, 1)

Y v —xp)+ > (k—y;(8)x; < v.

j=1 j=1

Remark 1. Formulation (25)-(27) is at least as good as formulation
(9)-(13).

The above result can be explained as follows. Let P(35y_(27) and
Pg)_13) be the polyhedra defining the feasible domains of the con-
tinuous relaxation of formulations (25)-(27) and (9)-(13), respec-
tively. Consider a feasible solution (possibly fractional) (x,v,z) e
Pg)_3)- It follows that its projection onto (x, v) belongs to
P25)_(27), and the result follows.

The above result, together with the fact that formulation (25)-
(27) has a smaller number of constraints and variables than for-
mulation (9)-(13), justifies that in our computational experiments
(see Section 5) we only report results based on formulation (25)-
(27) since its performance is superior to the one of (9)-(13).

D. Ponce et al./Computers and Operations Research 98 (2018) 127-136 131

3.2. Valid formulations based on Hamming distance among profiles

In this section, we derive alternative valid formulations for the
k-sum approval voting problem that do not make explicit use of
all the possible subsets of {1,...,n} of cardinality k. For an arbi-
trary subset S of {1,...,n}, we consider the sum of the Hamming
distances of all P;, i€S, to x as follows

ds(x) = ZZ |Xj _pij|~

ies j=1

For a given k, with 1 <k <n, the problem of electing a commit-
tee that minimizes the sum of the k largest Hamming distances
can be formulated as a Mixed Integer Linear Programming (MILP)
problem, provided that for any given x a permutation o such that
Aoy ®) = dg iy (®), i=1,...,n—1, is fixed.

k
minZdJX(h)(X) (29)
h=1

zij=xj(1 —pij) + p;j(A—x;) i=1,...,n, j=1,....m (30)
m

di(X)ZZZU i=1,...,n (31)
j=1

x;ef{0,1} j=1,....m (32)

Problem (29)-(32) has m binary variables, nm continuous vari-
ables, and O(nm) linear constraints. If there is no confusion, in the
following, we simply write d; in place of d;(x).

The above formulation is correct but it is not operational, since
it depends on the valid permutation function ox(-) that sorts the
distances in a non-increasing order. However, it is still possible to
derive alternative valid formulations that do not make explicit use
of that permutation (see Ogryczak and Tamir, 2003; Puerto et al.,
2016). Indeed, let us consider a new variable t>0 and a set of n
variables v;, i=1,...,n.

Theorem 3. The following is a valid formulation for the general k-
sum approval voting problem.

n
min kt + " v; (33)

i=1

s.t. v; > d,’ —t

m

diZZZij i=1,...,n (35)
j=1

zij > xj(1-pij) +p;j(A1—x%;) i=1,....n, j=1,....m (36)

xj€{0,1} j=1,....m 37)

t>0,v,>0 i=1,...,n (38)

Proof. Consider the general formulation (6). Following the proof in
Puerto et al. (2016), the inner maximum in problem (6) is equiva-
lent to the following

n
max Y dg;

i=1

th =k
i=1

g e{0,1} i=1,...,n (39)
The above constraint matrix is TU and thus the integrality con-
straints on the variables g;, i =1, ..., n, in problem (39) can be re-

laxed to 0<q;<1,i=1,..., n, and the resulting problem has the
following exact dual:

n
min kt+ Y v
i1
st. vy>di—t i=1,...,n
;>0 i=1,...,n (40)

Notice that, since d; are distances, the coefficients in the objec-
tive function of (39) are non negative and, w.l.o.g., we can set the
variable t as t>0. To complete the proof, it suffices to add to the
above dual problem the constraints (30)-(32). O

When a constraint on the number C of candidates to be elected
must be also considered, we can add it to the above program by
condition

m
> ¥ =C
j=1

An alternative valid formulation for the general k-sum approval
voting problem can be provided by exploiting the one proposed in
Blanco et al. (2014), as stated in the following theorem.

Theorem 4. The following is a valid formulation for the general k-
sum approval voting problem.

n k

min Y ui+ Y v, (41)
i=1 h=1

s.t.u;+v, >d; i=1,...,n, h=1,...,k (42)
m

dizZz,-j i=1,...,n (43)
=1

zij=xj(1-pij) +pij(A1—-%x;) i=1,....,n, j=1,....m (44)

xj€{0.1} j=1...m (45)
u >0 i=1,...,n (46)
v, >0 h=1,...,k. (47)

Proof. Consider the general formulation (6). We introduce the fol-
lowing binary variables y;;, i=1,...,nand h=1,...,k, such that,
given x, y;, = 1 if the distance d; of voter i is in position h <k in
the non-increasing ordering, and y;; = 0 otherwise. Following the
proof in Blanco et al. (2014), for a given vector x, the sum of the k
largest distances can be written

132 D. Ponce et al./Computers and Operations Research 98 (2018) 127-136

M=
M=

k
> do) (x) = max diyin
h=1 i=1h=1

n

s.t. Nyw<1l h=1,...k

17<1

yn<1 i=1,...,n

h=1

vne{0,1} i=1,....,n, h=1,... k.

(48)

In fact, problem (48) is a transportation problem, so that we
can relax the binary variables 0 <y;, < 1. Taking the dual of (48) we
obtain

n k
DU+ Y vy
=1

k
Y- do, () (X) = min
h=1 i=1

s.t. u+v,>d; i=1,...,n, h=1,...k
uj, v, >0 i=1,....,n, h=1,...,k
(49)

To complete the proof, it suffices to add to the above dual prob-
lem the constraints (30)-(32). O

Remark 2. The equivalence between formulations (33)-(38) and
(41)-(47), in Theorems 3 and 4, implies that the formulation in
Theorem 4 admits, at least, an optimal solution in the form vy =t*
for all h=1,...,k and u} = max{0, ¢*}, for all i=1,...,n that is
also optimal for the formulation of Theorem 3.

Proposition 1. The formulations (25)-(27), (33)-(38) and (41)-(47)
produce the same LP bound.

Proof. Let us consider a generic X € [0, 1]™. From our discussion
above, it is clear that, fixing X, the objective function value of all
problems (25)-(27), (33)-(38) and (41)-(47) equals Zﬁ:] dgi(h) ®),
where dgx,m(}?) >...> d"x‘m) (X). Hence, the three problems return
the same objective function value for each feasible solution of the
continuous polytope and therefore this proves the claim. O

4. Strengthening the formulations

The above MIP formulations are exact but still one can observe
that they have some GAP at the root node of the Branch & Bound
tree (see Section 5) although this gap is always rather small. The
goal of this section is to develop some preprocessing strategies
and valid inequalities that allow to improve the polyhedral descrip-
tion of the different formulations, and get a better bound for this
GAP with a consequent gain in computational times. In the rest of
the paper we consider the unconstrained version of the k-sum ap-
proval voting problem, i.e., the size of the committee is not fixed.

First of all, we advance an easy preprocessing that allows fixing
some variables either to zero or to one before the global search
starts. The rationale behind this is the following. For a candidate j
to be member of at least one committee it is required that, at least
for a subset S of size k <n, there is a majority of voters that ap-
proves him, that is, y;(S) > |k/2]. Therefore, if the total number of
voters preferring candidate j, y;, satisfies y; > n— [k/2] this can-
didate will be always included in any committee and thus we can
set x; = 1. This justifies (50). On the other hand, if candidate j is
only preferred by less than |k/2]| voters, he will be never included
in a k-sum committee and thus x; = 0. This justifies (51)

Xj=1 if ;> n— | k/2] (50)

xj=0 if y; < [k/2]. (51)

Note that this preprocessing is more interesting for large values of
k’s.

In the following, we also develop a procedure for the efficient
solution of the k-sum approval voting problem for k fixed that
works in an iterative fashion starting from k = n and solving a k-
sum approval voting problem for all k = n,... k. This procedure
is based on valid inequalities involving optimal objective function
values of the k-sum and the (k + 1)-sum approval voting problems
for any k.

First, we analyze whether inequalities (20)-(22) can be adapted
to the formulations described in Section 3.2, as valid cuts. Clearly,
they are valid inequalities but, as we will see, they do not improve
such formulations.

Consider, first, formulation (33)-(38). Note that the cuts in
(20)-(22) consist in aggregated forms of constraints (36), (34) and
(35), respectively.

zij > pii(1 = x)Vi, j= "z > y;(H(A —xj) Vj

ieS
zij = (1= pipx¥i, j= > "z = (k—y;(S)x; Vj

ieS
Hence, the use of them as valid inequalities is not useful. Fur-
thermore, constraint }7'; > i szj; < kt + Y ;.5 v; can be obtained
by means of a natural aggregation of (34) and (35).

In light of the above results, we develop valid inequalities based
on solutions of the k-sum approval voting problem for different k
values to be used in a strategy that solves problems for different k
consecutively.

In order to present the result some additional notation is re-
quired. For a given k, let us denote by z(k) and x(k) the optimal
objective function value and an optimal solution of the k-sum ap-
proval voting problem, respectively.

Proposition 2. For a given instance (N, A, P) of the k-sum approval
voting problem the following inequality holds

k
z(k) > mz(l<+ 1).

Proof. By definition, z(k) is the sum of the k largest Hamming dis-
tances of the voters’ profiles with respect to x(k). It means that
distance in position k + 1, d(,x(k)(kﬂ)(x(k)), satisfies
z(k)

0 =< do k1) (X(K)) =< x
Thus, we can conclude that x(k) is a feasible solution for the (k +
1)-sum problem and moreover, there exists an upper bound for
z(k + 1) given by
z(k)

K
The above expression gives a lower bound for z(k), provided that
z(k+ 1) is known

z(k+1) <z(k) + (52)

k
z(k) > mz(k+ 1). (53)
O

Since, for a given (N, A, P) we can solve the different k-sum
voting problems in any order, after the above result, it is advis-
able to do it following the non-increasing sequence k=n,..., 1.
Indeed, as shown in Section 2, solving the problem for k =n (i.e,,
the minisum problem) is polynomial. Once this solution and ob-
jective function value are found, they can be used to improve the
solution for k=n -1 and so on.

We now illustrate an iterative scheme for efficiently solving the
k-sum approval voting problem following the strategies illustrated
above in this section. This approach has been effectively used in
our computational experiments.

D. Ponce et al./Computers and Operations Research 98 (2018) 127-136

133

Table 1
Summary for n = 50, uniform data.
Form. Time (s) GAP (%) Nodes %Solved root %Fixed
Avg Max Avg Max Avg Max
25)-(27 65.63 439686 022 263 738830 1,092,091 15.89 13.92
33)-(38 0.13 224 022 263 276.67 23,170 62.74 13.92
1)-(47 0.58 19.99 022 263 1128.03 158,152 5417 13.92
Table 2
Summary for n = 50, biased data.
Form. Time (s.) GAP (%) Nodes %Solved root %Fixed
Avg Max Avg Max Avg Max
25)-(27 1234 25885 035 313 973.61 52,028 17.83 29.42
3)-(38 0.06 0.40 035 313 15.76 959 68.91 29.42
1)-(47 0.17 1.23 035 313 71.33 10,914 54.86 29.42
Table 3

1. Solve the problem for k = n, i.e., the minisum problem. Its op-
timal solution, x(n), is easily seen to be

xj=1 if y; >n—[n/2] (54)

Next, obtain z(n), the optimal objective function value of this
problem.
2. From k=n—1 to k=1 set the following valid inequalities:

[kf]z(k + 1)—‘ <z(k) <z(k+1) — dgiqy(x(k+1)).

From the discussion above, it is clear that, after solving the
problem with W(k+ 1), we have the lower bound (53) on z(k)
that we can use as a valid inequality when solving the problem
with weighting vector W(k). On the other hand, (52) provides an
upper bound on z(k) by z(k+ 1). We will show in our computa-
tional experiments section that the improvements obtained by the
application of these strategies are remarkable (see Section 5). In-
deed, our computational experiments show that, even if the aim
would be solving a problem for a given k', it is worth solving be-
fore the same instance for k =n, ..., k' + 1 since, using the bounds
and the initial solution provided for each k on the problem for
k —1, produces an overall time saving. We observe that solving
directly the problem for k = k’, without exploiting the result in
Proposition 2, is more time consuming than solving the problems
for k=n,..., kK +1 by the iterative scheme illustrated above (de-
rived from Proposition 2). This can be easily checked by adding
up all the computing times needed for solving all problems in-
volved in the above scheme up to k’, and comparing the result-
ing computing time to the cpu time required to solve a single
problem for the given k’. Actually, it may be even worse since, in
many cases, solving directly the problem for k' may lead to reach-
ing the maximum allowed computing time without having found
even a feasible solution. On the other hand, the approach based on
Proposition 2 solves the problem rather efficiently.

5. Computational results

This section reports on the results of an exhaustive compu-
tational test carried out on two sets of instances and our three
formulations with and without implementing the improvement
strategies illustrated in Section 4. We have tested data sets gen-
erated according to the scheme proposed in LeGrand et al. (2007).
That paper distinguishes between uniform and biased data. Uniform
data are obtained by generating all profiles as follows. For each el-
ement in the profile (candidate), set 1 (the candidate is approved)

Valid inequalities generated in a Branch & Bound tree for solving formulation (25)-
(27) with n =50 and for uniform and biased data.

Data Avg # Cuts Max # Cuts Avg # Cuts node Max # Cuts node
Uniform 97,963.15 9,428,791 124.43 463
Biased 7390.41 315,094 63.80 444

or 0 (not approved) according to a random variable that assumes
values 0 and 1 with equal probability. Bias data are obtained by
generating three sets of profiles separately. First, two possible ap-
proval probabilities, denoted by m; and m,, are generated by se-
lecting them from a random variable that is distributed uniformly
in [0, 1]. Then, for the 40% of the profiles each element is gener-
ated by a random variable that assumes value 1 with probability
w1 and value 0 with probability 1 — 1. Another 40% is generated
in the same way, but using 7, in place of ;. The remaining 20%
is generated as in the case of uniform data (see LeGrand et al.,
2007). Overall, we have solved 22,750 instances with the different
combinations for n, m, k, and uniform and biased data.

In a preliminary analysis, we wanted to test the performance of
our three formulations in instances of small size (n = 50 and differ-
ent values for m = 30, 35, 40, 45, 50, 55, 60), in order to make the
decision of which are the formulations to be tested on instances
of larger size. Tables 1 and 2 report the average results of all the
1750 instances for n = 50 for the uniform and biased data (5 ran-
domly generated instances for each m and k=1, ...,50). The re-
sults are organized as follows. Each row reports information about
a different formulation that is indicated by its references. All in-
stances were solved to optimality by all formulations. For each
formulation we include information about average and maximum
time expressed in seconds (Time (s)), average and maximum per-
cent gap at the root node (GAP (%)), average and maximum num-
ber of nodes in the searching tree (Nodes), percentage of instances
solved at the root node (%Solved root) and percentage of binary
variables fixed with the preprocessing (%Fixed).

For formulation (25)-(27), we also report information on the
average and maximum number of cuts (# Cuts), and the average
and maximum number of cuts in each node (# Cuts node) (see
Table 3). This information is relevant to understand the number
of constraints, out of the exponentially many in the formulation,
which are needed to have a valid representation of the problem at
each node of the Branch & Bound tree.

We have also tested empirically (see Tables 1 and 2), that the
gap at the root node coincides for the three formulations. This con-
firms that the three formulations are equivalent in terms of LP gap

134 D. Ponce et al./Computers and Operations Research 98 (2018) 127-136

Table 4
Summary for n=100, uniform data.
Form. Time (s) GAP (%) Nodes %Solved root % Fixed
Avg Max Avg Max Avg Max
m=30 (41)-(47) 335 23.66 0.17 0.84 1565.53 28,751 46.0 9.32
(33)-(38) 0.37 4.04 0.17 0.84 1488.07 36,793 46.4 9.32
m=35 (41)-(47) 4.39 55.32 0.17 2.50 2695.97 12,6951 43.8 8.87
(33)-(38) 048 10.47 0.17 2.50 233413 96,381 44.8 8.87
m=40 (41)-(47) 5.40 93.11 0.14 114 4149.20 158,828 44.4 8.42
(33)-(38) 0.70 12.53 0.14 114 3674.94 121,300 45.0 8.42
m=45 (41)-(47) 13.40 251.75 0.13 2.00 11,463.60 657,000 42.6 9.44
(33)-(38) 156 65.41 0.13 2.00 9924.58 578,547 43.6 9.44
m=50 (41)-(47) 18.30 532.31 0.12 0.93 19,495.08 781,787 43.6 12.38
(33)-(38) 248 78.21 0.12 0.93 17,922.55 605,694 45.2 12.38
m=55 (41)-(47) 57.27 1652.28 0.10 0.49 53,060.66 1,875,622 41.0 7.55
(33)-(38) 5.12 131.90 010 049 4527816 1,256,747 402 755
m=60 (41)-(47) 4162 230634 011 156 6810588 7640315 40.0 10.30
(33)-(38) 578 38224 011 156 4784094 4036987 396 1030
Table 5
Summary for n=100, biased data.
Form. Time (s) GAP (%) Nodes %Solved root %Fixed
Avg Max Avg Max Avg Max
m=30 (41)-(47) 0.58 1.96 0.30 313 48.83 2215 48.2 28.33
(33)-(38) 0.08 0.42 0.30 313 4413 2013 48.6 28.33
m=35 (41)-(47) 0.63 2.02 0.28 2.63 77.93 4147 43.6 30.07
(33)-(38) 0.10 0.93 0.28 2.63 81.37 6788 45.6 30.07
m=40 (41)-(47) 0.76 247 0.25 238 193.00 9921 42.0 26.62
(33)-(38) 0.13 0.91 0.25 238 177.40 8989 48.4 26.62
m=45 (41)-(47) 0.69 223 0.24 217 145.96 8026 424 2724
(33)-(38) 0.12 0.81 0.24 217 12117 5985 46.0 2724
m=>50 (41)-(47) 0.69 293 0.23 2.00 263.15 15,166 44.6 29.21
(33)-(38) 0.13 0.93 0.23 2.00 202.81 6125 50.2 29.21
m=>55 (41)-(47) 0.81 6.33 0.21 123 497.78 25,672 46.6 28.69
(33)-(38) 0.17 3.33 0.21 123 443.27 26,845 52.2 28.69
m=60 (41)-(47) 1.06 39.10 0.22 1.67 1187.28 221,519 354 28.51
(33)-(38) 0.26 24.92 0.22 1.67 1136.49 234,681 39.0 28.51
and explains the rather small integrality gaps of these formula- tio, ;;I;t]ﬁgl of any of our formulations based on the relative gap
tions. optval — LPval
The conclusion of the above tables is that formulation (25)-(27) (Rgap := oprel = 2V 100%). Indeed, % < %' Actually,

is as stronger as the other two in terms of gap, but its performance
is inferior in terms of time and number of problems solved at the
root node. For this reason, we have decided to carry out the final
test for larger instances only for formulations (33)-(38) and (41)-
(47). Therefore, we evaluate and compare the performance of for-
mulations (33)-(38) and (41)-(47) on medium size instances, i.e.,
those with n = 100, 200.

Tables 4 and 5 report our results for the two types of data sets,
i.e., uniform and biased, for n = 100. All the information is orga-
nized as in previous Tables 1 and 2. Again, all problems are solved
at optimum.

The conclusions from Tables 4 and 5 are the following. Formu-
lation (33)-(38) is one order of magnitude faster than (41)-(47).
For instance, the average time for the largest instance sizes (n =
100, m = 60), solved with (33)-(38), is about 5.78 s and the max-
imum cpu time is 382.24 s. The same instances solved with (41)-
(47) take an average and maximum time of 41.62 and 2306.34 s,
respectively. This fact can be explained by the smaller number of
variables and constraints required by formulation (33)-(38) with
respect to (41)-(47). The remaining factors (GAP, Nodes, %Solved
and %Fixed) are quite similar in both cases. In fact, as we have
seen theoretically, both formulations are equivalent in terms of LP
gap and they always fix the same number of binary variables. It
is also very interesting to test the practical performance of a naive
approximation algorithm based on using the solutions of the lin-
ear relaxation, as proposed for instance in Amanatidis et al. (2015).
One can easily bound from above the empirical performance ra-

optval
since the largest relative gap is below 3.13% (see Table 4), this re-

sults, in the worst case (n = 100, m = 30), with an empirical per-
formance ratio bounded above by 1.03.

Next, we further test our best formulation, namely (33)-(38),
on instances with increasing size in order to explore the size limit
that can be solved within the time limit of 7200 s. Tables 6 and
7 report our results. As can be observed in these tables, there is a
difference in the performance with respect to uniform and biased
data. For uniform data we get the optimum within the fixed time
limit already for n = 150. For biased data we are able to solve all
instances to optimality within the time limit with instance size up
to n = 200. The reason for this clear difference relies on the fact
that the preprocessing (50) and (51) is much more efficient for bi-
ased data where a greater percentage of variables are fixed either
to zero or to one. Indeed, this percentage is on average of 24.79%
for biased data with n =200 as compared to only 7.34% for the
uniform data for n = 150.

In order to analyze the performance of formulation (33)-(38),
in Fig. 1 we visualize two measures of efficiency computed for the
different k =1, ..., 100. For each k, we show the cpu time required
on average for solving the 35 instances with n = 100 (5 randomly
generated instances for each value of me {30, 35, 40, 45, 50, 55,
60}). We also provide the number of instances solved at the root
node (without branching). We have observed that the behavior is
similar for the different values of n. For this reason, we show only
the plots related to the case of n = 100. Fig. 1a and b refer to uni-
form data, while Fig. 1c and d refer to biased data.

D. Ponce et al./Computers and Operations Research 98 (2018) 127-136 135
Table 6
Summary for n=200, biased data (solved to optimality within 7200 s).
Form. Time (s) GAP (%) Nodes %Solved root %Fixed
Avg Max Avg Max Avg Max
m=30 (33)-(38) 044 9.12 0.12 1.85 819.95 35,683 60.6 29.83
m=35 (33)-(38) 2.80 39.15 0.12 159 7962.11 162,887 385 14.09
m=40 (33)-(38) 6.27 225.75 0.10 1.59 22,843.11 1,165,252 56.1 24.90
m=45 (33)-(38) 2163 985.73 009 133 76,974.33 4,847,789 48.6 27.74
m=50 (33)-(38) 42.09 1129.91 008 093 14330551 4,607,534 417 24.76
m=55 (33)-(38) 5093 507065 0.09 161 186,926.77 28,259,032 40.7 20.79
m=60 (33)-(38) 49.97 5409.05 008 0381 207,304.41 29,489,376 56.8 3145
Table 7
Summary for n=150, uniform data (solved to optimality within 7200 s).
Form. Time (s) GAP (%) Nodes %Solved root %Fixed
Avg Max Avg Max Avg Max
m=30 (33)-(38) 120 11.01 015 093 4302.39 60,713 28.27 7.44
m=35 (33)-(38) 274 45.11 015 238 11,338.78 237,964 30.80 6.97
m=40 (33)-(38) 7.87 138.90 013 062 36,490.51 768,328 28.80 743
m=45 (33)-(38) 12.64 302.69 012 192 56,540.63 1,886,774 2733 7.61
m=50 (33)-(38) 44.67 777.99 0.11 0.89 211,780.07 4,787,806 28.67 743
m=55 (33)-(38) 81.99 406890 0.10 1.08 419,709.27 27,576,236 23.87 7.48
m=60 (33)-(38) 209.87 666497 010 0.76 1023,05510 36,286,662 24.67 6.99
12 60
10 50
8 40
2 FEE
£ 26
4 20
2 10
o =M .
0 2 “ 60 80 100 120 0 20) 60 80 100 120

(a) Cpu time (in seconds) - uniform data.
09
08
07
06
05
04

Time ()

03
02
01
0
YOORRIDODRLDPRBILOELOPA DSOS
k

(c¢) Cpu time (in seconds) - biased data.

(b) Instances solved at the root node - uniform data.

40

35

soved
@ root node

YOO PP DLELDORESESERCADER PG
K

(d) Instances solved at the root node - biased data.

Fig. 1. Efficiency measures vs. k for formulation (33)-(38) with n = 100.

Analyzing the figures, we conclude that the general behavior
is rather similar for uniform and biased data. Regarding the com-
puting time for solving the problems, we observe that it increases
when k decreases from k = n until a certain threshold (which de-
pends of the type of data, namely k € (15, 30) for uniform data and
k (9, 20) for biased data) and then the time decreases with k un-
til k = 1. This trend can be explained from the combinatorics of the
objective function which relates to (Z) With respect to the number
of instances solved at the root node, the performance is also simi-
lar. This number decreases with k from k = n until a certain value
(which again depends on the type of data, k~70 and k~28, for
uniform and biased data, respectively) and then it increases with k
up to k= 1.

Focusing on Fig. 1a and c, one can also find additional
evidence of the usefulness of the procedure following from
Proposition 2 and discussed at the end of Section 4.

6. Minimizing the h smallest distances

In this section, we briefly discuss the problem of minimiz-
ing the sum of the h smallest Hamming distances already intro-
duced in Section 2. In Amanatidis et al. (2015) this problem has
been already considered in the approval voting application con-
text, and the authors prove that, when the OWA vector is non-
decreasing, that is, the weighting vector is of the form M(n - h) =
,...,0,1,...,1), with h the number of ones, 1 <h <n, the win-

136 D. Ponce et al./ Computers and Operations Research 98 (2018) 127-136

ning committee can be found in polynomial time for a fixed value
of h. They suggest an enumerative approach based on the solu-
tion of (nfh) = (2) minisum problems that is obviously not ef-
ficient even for a fixed h, and not polynomial if h is part of
the input. Using arguments similar to those in Section 2 for the
problem of minimizing the sum of the k largest Hamming dis-
tances, also the problem of minimizing M(n — h) for a fixed h (see
Amanatidis et al. (2015)) can be proved to be polynomial applying
Linear Programming.
For a fixed h, the general problem can be stated as

Xer{r(l)iln}m (min{ds(x) | S {1.....n},|S| = h}). (56)

We can switch the two min operators, thus obtaining

min min 1ds(x)}).

Sc{1,.“,n},|5|:h(xe{O,l}"'{ S()}) (57)
For a given subset S c {1,...,n}, the inner minimum in prob-

lem (57) corresponds to the minisum problem

min Y y;(S)(1—x)) + > (h—y;(5)x;

j=1 j=1
st. 0<x<1,

which is polynomially solvable. Then, considering all the (,",) =

(Z) subsets of cardinality n — h, for a fixed h, the problem can be
solved by a sequence of LPs.

7. Concluding remarks

In this paper we studied two versions of the k-sum approval
voting problem, one minimizing the sum of the k largest distances
from a voter profile to a committee, the other minimizing the sum
of the h smallest distances. The latter approach for approval voting
elections was not deeply analyzed in the literature, but it is worth
remarking that its application in this context is meaningful. In fact,
the problem can be stated as follows: elect a committee minimiz-
ing the sum of the h smallest Hamming distances from the voters’
profiles. As already observed in Amanatidis et al. (2015), the ap-
plication is significant for small values of n—h, say n—h=1 or
n —h = 2. Actually, in these cases, the assumption is that the first
one or two maximum distances do not play a significant role in
the selection of the committee, and this is true especially when
the population of voters is extremely large. The idea is that there
will be always some voters whose preferences are completely dis-
joint from those of the majority of the others. This is, in fact, a way
of considering such voters’ profiles as outliers. But, in our opinion,
there are additional cases in which the application is meaningful,
namely, for every choice of h such that n—h < § — 1. Under this
condition, the approval voting problem consists of taking into ac-
count only the preferences of the absolute majority of the voters
(h = § +1), with the aim of selecting the committee correspond-
ing to the boolean vector x* for which the sum of the Hamming
distances w.r.t. the h considered profiles is minimized.

The two problems following the OWA approaches for approval
voting studied in this paper can be seen as two different ways of
facing the same problem, but giving more importance to one of
the two principles that are at the basis of any democratic election.
The problem with weighting vector W (k) = (1,...,1,0,...,0) im-
plements the idea that representation must be maximized. If, on
the other hand, one wants to give more importance to govern-
ability, the minisum approach (with weighting vector M(n — h) =
0,...,0,1,...,1)) can be pursued with a suitable choice of h,
since it is able to guarantee a strong and cohesive consensus. This
strength can be enforced by increasing the value of h. We leave
the choice of which is the best voting rule for a country to its law-
makers, who will be able to choose the best rule, according to the

specific political and social situation in which the election takes
place.

Going back to our theoretical considerations, to the best of our
knowledge, the computational complexity of the minsum prob-
lem with weighting vector M(n —h) = (0,...,0,1,...,1) when h
is part of the input is still an open problem. In our opinion this is
an interesting issue that will be the focus of our future work.

Acknowledgments

This research has been partially supported by the Spanish
Ministry of Economy and Competitiveness/FEDER grants numbers
MTM2013-46962-C02-01 and MTM2016-74983-C02-01. This paper
has been written during a sabbatical period of the second author
in Universita di Roma La Sapienza whose support is also acknowl-
edged.

The authors would like to thanks the referees for their interest-
ing and constructive suggestions which help to improve the quality
of the paper.

References

Amanatidis, G., Barrot, N., Lang, J., Markakis, E., Ries, B., 2015. Multiple refer-
enda and multiwinner elections using hamming distances: complexity and
manipulability. In: Proceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems. International Foundation for Au-
tonomous Agents and Multiagent Systems, AAMAS, pp. 715-723.

Aziz, H., Gaspers, S., Gudmundsson, J., Mackenzie, S., Mattei, N., Walsh, T., 2015.
Computational aspects of multi-winner approval voting. In: Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, AA-
MAS, pp. 107-115.

Barrot, N., Lang, J., Yokoo, M., 2017. Manipulation of hamming-based approval vot-
ing for multiple referenda and committee elections. In: Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS,
pp. 597-605.

Blanco, V., Ali, S.E.H.B., Puerto, J., 2014. Revisiting several problems and algorithms
in continuous location with ¢; norms. Comput. Optim. Appl. 58, 563-595.

Brams, S.J., Fishburn, P., 1978. Approval voting. Am. Polit. Sci. Rev. 72, 831-847.

Brams, S.J., Fishburn, P., 2005. Going from theory to practice: the mixed success of
approval voting. Soc. Choice Welfare 25, 457-474.

Brams, S.J., Fishburn, P., 2007. Approval Voting. Springer.

Brams, SJ., Kilgour, D.M., Sanver, M.R., 2007. A minimax procedure for electing com-
mittees. Public Choice 132, 401-420.

Byrka, J., Sornat, K., 2014. PTAS for minimax approval voting. In: 10th Conference on
Web Interactions and Network Economics. Beijin.

Caragiannis, 1., Kalaitzis, D., Markakis, E., 2010. Approximation algorithms and mech-
anism design for minimax approval voting. AAAIL

Fishburn, P., Pekec, A., 2004. Approval Voting for Committees: Threshold Ap-
proaches. Technical Report, 2004.

Frances, M., Litman, A., 1997. On covering problems of codes. Theory Comput. Syst.
30, 113-119.

Givant, S., Halmos, P.,, 2009. Introduction to Boolean Algebra. Springer.

Kilgour, D.M., 2010. (Chapter 6 of the handbook), approval balloting for multi-win-
ner elections. In: Laslier, Sanver (Eds.), Handbook on approval voting. Springer.
Chapter 6

Laslier, J. F, Sanver, M. R. (Eds.), 2010. Handbook on Approval Voting, Springer.

LeGrand, R., Markakis, E., Mehta, A., 2007. Some results on approximating the min-
imax solution in approval voting. AAMAS 07. Honolulu.

Li, M., Ma, B., Wang, L., 2002. On the closest string and substring problems.]. ACM
49, 157-171.

Menezes, M.B.C., Silveira, GJ.C.d., Drezner, Z., 2016. Democratic elections and cen-
tralized decisions: condorcet and approval voting compared with median and
coverage locations. Eur. J. Oper. Res. 253, 195-203.

Nemhauser, G.L., Wolsey, LA, 1988. Integer Programming and Combinatorial Opti-
mization. Wiley, Chichester.

Nickel, S., Puerto, J., 2006. Location Theory: A Unified Approach. Springer.

Ogryczak, W., Tamir, A., 2003. Minimizing the sum of the k largest functions in lin-
ear time. Inf. Process. Lett. 85, 117-122.

Puerto, J., Rodriguez-Chia, A.M., Tamir, A., 2017. Revisiting k-sum optimization prob-
lems. Math. Prog. 165, 579-604.

Rapoport, A., Felsenthal, D.S., 1990. Efficacy in small electorates under plurality and
approval voting. Public Choice 64, 57-71.

Taylor, A.D., Pacelli, A., 2008. Mathematics and politics. Springer Science+Businness
Media, LLC, New York, second ed..

Yager, R.R., 1988. On ordered weighted averaging aggregation operators in multicri-
teria decisionmaking. IEEE Trans. Syst. Man Cybern. 18, 183-190.

https://doi.org/10.13039/501100002924
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0001
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0002
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0003
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0004
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0005
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0006
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0007
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0008
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0009
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0010
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0011
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0012
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0013
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0014
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0015
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0016
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0017
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0018
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0019
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0020
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0021
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0022
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0023
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0024
http://refhub.elsevier.com/S0305-0548(18)30137-0/sbref0024

	Mathematical programming formulations for the efficient solution of the k-sum approval voting problem
	1 Introduction
	2 Problem definition and basic results
	3 Mathematical programming formulations for the approval voting problem
	3.1 Valid formulations based on subsets of size k
	3.2 Valid formulations based on Hamming distance among profiles

	4 Strengthening the formulations
	5 Computational results
	6 Minimizing the h smallest distances
	7 Concluding remarks
	 Acknowledgments
	 References

