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a b s t r a c t 

In this paper we address the problem of electing a committee among a set of m candidates on the basis 

of the preferences of a set of n voters. We consider the approval voting method in which each voter can 

approve as many candidates as he likes by expressing a preference profile (boolean m -vector). In order to 

elect a committee, a voting rule must be established to ‘transform’ the n voters’ profiles into a winning 

committee. The problem is widely studied in voting theory; for a variety of voting rules the problem 

was shown to be computationally difficult and approximation algorithms and heuristic techniques were 

proposed in the literature. In this paper we follow an Ordered Weighted Averaging approach and study 

the k -sum approval voting (optimization) problem in the general case 1 ≤ k < n . For this problem, we 

provide different mathematical programming formulations that allow us to solve it in an exact solution 

framework. We provide computational results showing that our approach is efficient for medium size test 

problems ( n up to 200, m up to 60), since in all tested cases it was able to find the exact optimal solution 

in very short computational times. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

A typical problem in collective decision making is to select one

or more) winners among a set of m candidates on the basis of the

references of a set of n voters. This situation arises in many dif-

erent real-life contexts, as in sport competitions to select the set

f winners, or in political elections, and, more in general, when-

ver a committee must be formed from a larger set of candidates

for example, in companies or universities). For m > 1 the problem

s a multi-winner one and the ballot gives the possibility to each

oter to express his preference for each single candidate by approv-

ng or not his nomination. This means that voters can approve as

any candidates as they like by expressing their preference pro-

le ( approval balloting ). Approval voting is a well-known method

sed for this kind of multi-winner elections. The method, intro-

uced by Brams and Fishburn in 1978 Brams and Fishburn (1978) ,

as widely studied in the literature on voting theory (see Brams

nd Fishburn, 2005; Brams and Fishburn, 2007; Laslier and Sanver,

010; Menezes et al., 2016; Rapoport and Felsenthal, 1990; Taylor

nd Pacelli, 2008 and the references therein). 
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Consider a set N of n voters and a set A of m candidates. For

ach i , P i = (p i 1 , . . . , p i j , . . . , p im 

) denotes the preference profile of

oter i which corresponds to a boolean m -vector whose generic el-

ment p ij is equal to 1 if candidate j is approved by i and equal to 0

therwise. Therefore, in the problem input we have N, A and a set

 of preference profiles of the voters, so that a generic instance is

enoted by ( N, A, P ). The problem is to find in A the “best” subset

f candidates ( winning or elected committee), according to a certain

oting rule (criterion). A committee is represented by a boolean

 -vector x = (x 1 , . . . , x j , . . . , x m 

) , in which x j = 1 means that can-

idate j is in the committee, and x j = 0 otherwise. 

When we have a single-winner election, the typical voting rule

s the one that elects the most approved candidate, i.e., the one

ho received the largest number of votes (with a tie-breaking rule

f needed). 

For multi-winner elections, several voting rules have been pro-

osed for approval voting ( Kilgour, 2010 ). For a majority of the

oting rules computing a winning committee is a difficult prob-

em ( Aziz et al., 2015; Fishburn and Pekec, 2004 ). Among the

any, there is a class of rules known as centralization procedures

hat was widely studied in the literature. Two rules in this class

ere mainly analyzed, namely, one based on the minisum crite-

ion and one on the minimax criterion. According to the first crite-

ion, the winning committee is the one that minimizes the sum
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of the n Hamming distances to the preferences profiles of the

n voters. The second criterion selects the committee that min-

imizes the maximum of its Hamming distances to the voters’

profiles. In Amanatidis et al. (2015) , a new family of rules has

been proposed to generalize minisum and minimax which make

use of Ordered Weighted Averaging operators (OWA) introduced by

Yager (1988) (see also Barrot et al., 2017 ). In this setting, a vector

of n weights W = (w 1 , . . . , w n ) is fixed; then the n distances be-

tween voters’ profiles and the decision vector (committee) are or-

dered from largest to smallest and they are weighted with the cor-

responding weight in W . Clearly, when W = (1 , 0 , . . . , 0) we have

the minimax criterion, while for W = ( 1 n , . . . , 
1 
n ) we have the min-

isum criterion. We observe that in Yager (1988) the weights are

normalized w.r.t. n . Since we do not normalize, the minisum crite-

rion in our case is given by W = (1 , 1 , . . . , 1) . Many other criteria

can be defined in this way by tuning the weights in W according

to the specific goal of the application. An interesting class of prob-

lems arises when vector W has only 0/1 values and more than one

weight is equal to 1. Suppose to have k elements equal to 1; when

they are in the first k positions of the vector of weights they refer

to the k largest distances, thus providing what is known in the lit-

erature as the k -sum approach already applied to many other com-

binatorial problems ( Nickel and Puerto, 2006 ). A similar problem

arises when we have elements equal to 1 in the last h positions

of the weighting vector ( h smallest distances). Both problems have

meaningful applications in approval voting. 

In this paper we study the problem of selecting a committee by

applying approval voting and basing on a k -sum objective function

( k -sum approval voting problems). In Amanatidis et al. (2015) it

is proved that for 1 ≤ k < n the problem is NP-hard and, therefore,

an approximation algorithm is provided to get feasible solutions

with guaranteed bounds. On the other hand, the same authors pro-

vide polynomial time exact algorithms for some families of weight-

ing vectors that consider the h smallest distances ( h fixed). In the

present paper we study these kind of problems under a mathe-

matical programming viewpoint, providing different exact formu-

lations for the k -sum approval voting problem, with 1 ≤ k < n . We

then exploit these formulations to develop exact solution proce-

dures that may be used to solve medium size problems at opti-

mality, or to efficiently find a sub-optimal solution when the size

of the problem is too large. In approval voting problems we con-

sider as small an instance with n < 100 and m < 30. A medium size

instance has n ∈ [10 0, 20 0] and m ∈ [30, 60]. Medium size problems

fit committee elections in universities or companies. On the other

hand, large size problems arise in political elections where typi-

cally n � 200. To develop such formulations we rely on the gen-

eral approach for solving k -sum optimization problems provided

in Ogryczak and Tamir (2003) and in Puerto et al. (2016) , as well

as, on theoretical results in Blanco et al. (2014) . We experimen-

tally study the solution of our k -sum approval voting problem by

using the above formulations in a Branch & Bound framework. All

formulations were tested on a variety of medium size randomly

generated test problems, in all cases providing the exact optimum

in very short times. In view of this, our formulations also provide

an efficient tool to certify optimality of a solution. 

We apply the mathematical programming approach also when

the h smallest distances are considered in the objective function

(anti- h -sum approval voting problem). We formulate this problem

as a polynomial sequence of linear programs, thus providing a for-

mal proof that it can be solved in polynomial time as already es-

tablished in Amanatidis et al. (2015) . 

The paper is organized as follows. Section 2 formally defines

the problem and sets the notation. Section 3 presents our math-

ematical programming formulations for the k -sum approval vot-

ing problem minimizing the sum of the k largest Hamming dis-

tances. We have developed two different types of formulations.
he first ones based on an exponential number of constraints that

an be separated efficiently (see Section 3.1 ) and the second ones

ased on compact representations of k -sums (see Section 3.2 ).

n Section 4 we describe how all the above mentioned formula-

ions can be strengthened with variable fixing and valid inequal-

ties. The computational experiments are reported in Section 5 ,

here we compare the performance of the formulations on two

ifferent sets of instances. Our results show that these formula-

ions are able to solve the problem for instances of medium and

arge sizes. Next, Section 6 outlines how to proceed for the anti-

 -sum approval voting problem which consists of minimizing the

um of the h smallest distances with respect to a given profile

manatidis et al. (2015) . Finally, Section 7 contains our concluding

emarks. 

. Problem definition and basic results 

Consider an instance of the k -sum approval voting problem ( N,

, P ). For a given committee x (i.e., a boolean vector x of length m )

e compute the Hamming distance between x and each voter pro-

le P i , i = 1 , . . . , n, thus obtaining the Hamming distance d i ( x ) for

ach voter i . Following the OWA approach, we consider a family of

unctions, parameterized by a vector of length n that maps a vec-

or of distances (d 1 (x ) , . . . , d n (x )) to an aggregated function D ( x )

OWA score). The k -sum approval voting problem can be stated as

ollows: select a committee x minimizing the OWA score of Ham-

ing distances D ( x ). In this paper we study two families of k -sum

pproval voting problems. The first computes the OWA score using

he following vector of weights: 

 (k ) = (1 , . . . , 1 , 0 , . . . , 0) , 

here k refers to the number of ones in the first k positions of

ector W (electing a committee that minimizes the sum of the k

argest Hamming distances). 

The second family uses the following weighting vector: 

(n − h ) = (0 , . . . , 0 , 1 , . . . , 1) , 

here h weights equal to 1 are in the last h positions (electing

 committee that minimizes the sum of the h smallest Hamming

istances). Clearly, the cases k = h = n are the same, and, in this

ase, we have the same OWA problem, that, in fact, corresponds to

he minisum problem. 

In Brams et al. (2007) (see Proposition 4) the authors account

or why the minisum problem is polynomially solvable, but they

o not provide a formal proof. The key idea is that the minisum

inning committee (also under a cardinality constraint on the size

f the committee fixed to C ), corresponds to a set of candidates

eceiving the most votes. In the following, we illustrate how the

esult in Brams et al. (2007) can be formally obtained by exploiting

inear Programming (LP). Denote by γ j the number of votes for

andidate j , j = 1 , . . . , m, we have 

j = 

n ∑ 

i =1 

p i j . 

onsider the case when the size of the committee is not given. A

alid formulation can be obtained basing on the following obser-

ation (see Brams et al., 2007 ): when k = n, all voters’ Hamming

istances (d 1 (x ) , . . . , d n (x )) are considered in the objective func-

ion, so that a candidate j is elected if the number of votes for him

j is greater than n − γ j . This leads to the following model 

min 

m ∑ 

j=1 

(n − γ j ) x j + 

m ∑ 

j=1 

γ j (1 − x j ) 

.t. x ∈ { 0 , 1 } m . 
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ince the objective function is linear, the optimal solution is at-

ained at some vertex of the m -dimensional hypercube. Then, we

an relax the binary variables of the above problem obtaining the

P model 

min 

m ∑ 

j=1 

(n − γ j ) x j + 

m ∑ 

j=1 

γ j (1 − x j ) 

.t. 0 ≤ x j ≤ 1 , j = 1 , . . . , n. 

s in Brams et al. (2007) , we can also consider a constraint on the

ize C of the committee, obtaining the following model 

min 

m ∑ 

j=1 

(n − γ j ) x j + 

m ∑ 

j=1 

γ j (1 − x j ) 

.t. 
m ∑ 

j=1 

x j = C 

x ∈ { 0 , 1 } m . (1) 

ince the constraint matrix is Totally Unimodular (TU), the problem

an be still solved by Linear Programming techniques, after relax-

ng the binary constraints on the variables x (see Nemhauser and

olsey, 1988 ). This definitely shows that the minisum case is poly-

omially solvable. 

When k < n the k -sum approval voting problem is NP-hard (see

manatidis et al., 2015; Frances and Litman, 1997 ). This justifies

he idea of studying efficient solution methods for the general

roblem resorting to heuristic approaches, or approximation algo-

ithms ( Byrka and Sornat, 2014; Caragiannis et al., 2010; LeGrand

t al., 2007; Li et al., 2002 ). In the following sections we present

 number of exact mathematical programming formulations of the

eneral k -sum approval voting problem with 1 ≤ k < n that can be

fficiently solved in a Branch & Bound framework enriched by the

se of valid inequalities. 

A similar problem arises when we consider the weighting vec-

or M(n − h ) with 1 ≤ h < n . The computational complexity of this

roblem was established in Amanatidis et al. (2015) when h is not

art of the input of the problem. Even if it is shown that the prob-

em is polynomially solvable in this case, to the best of our knowl-

dge, the computational complexity is still open when the problem

s formulated with a general h . We discuss this problem in the final

ections of the paper. 

. Mathematical programming formulations for the approval 

oting problem 

Consider now W ( k ) with 1 ≤ k < n . Let x be a committee, the

amming distance, d i ( x ), between the profile P i of voter i and x is

iven by 

 i (x ) = 

m ∑ 

j=1 

| p i j − x j | . 

Since both P i , i = 1 , . . . , n, and x are boolean vectors, we can

xploit the fact that the Hamming distance between two boolean

ectors corresponds to the vector of the Exclusive-or between the

ector elements ( Givant and Halmos, 2009 ). Thus the Hamming

istance d i ( x ) can be rewritten as follows 

 i (x ) = 

m ∑ 

j=1 

z i j 

 i j ≥ x j − p i j x j j = 1 , . . . , m 

 i j ≥ p i j − p i j x j j = 1 , . . . , m. (2) 

We can also replace the two inequalities above by the equiv-

lent representation: z i j ≥ x j (1 − p i j ) + p i j (1 − x j ) . This gives rise
o: 

 i (x ) = 

m ∑ 

j=1 

z i j (3) 

 i j ≥ x j (1 − p i j ) + p i j (1 − x j ) , j = 1 , . . . , m. (4) 

Let σx : { 1 , . . . , n } → { 1 , . . . , n } be an ordering function that, for

 given x , provides a permutation of the voters’ indices such

hat d σx (1) (x ) ≥ d σx (2) (x ) ≥ . . . ≥ d σx (n ) (x ) . For the given permuta-

ion the problem of electing a committee that minimizes the sum

f the k largest distances can be formulated as follows: 

in 

k ∑ 

h =1 

d σx (h ) (x ) 

x ∈ { 0 , 1 } m . (5) 

Following the approach in Blanco et al. (2014) , the above prob-

em can be restated as: 

min 

 ∈{ 0 , 1 } m 
(

max 
{

d S (x ) | S ⊂ { 1 , . . . , n } , | S| = k 
})

, (6) 

here d S (x ) = 

∑ 

i ∈ S 
∑ m 

j=1 | p i j − x j | , is the Hamming distance of the

et of voters in S to the committee represented by x . 

In general k -sum problems, the expression of the contribution

f a subset of voters to the election of a candidate can be also writ-

en by means of the γ j values, namely the number of voters ap-

roving a given candidate j . For this purpose, let us introduce some

ecessary notation. More formally, let S be a set of voters such that

 S| = k . We define γ j (S) = 

∑ 

i ∈ S p i j , as the number of votes of can-

idate j by the voters in S . For a given x and S such that | S| = k,

e can express: 

 S (x ) = 

m ∑ 

j=1 

max { γ j (S)(1 − x j ) , (k − γ j (S)) x j } (7) 

= 

m ∑ 

j=1 

γ j (S)(1 − x j ) + 

m ∑ 

j=1 

(k − γ j (S)) x j , (8) 

.e., the Hamming score of the k voters in S computed w.r.t. a given

olution x . Notice that by means of expressions (7) and (8) the

core is well calculated even when the solution is not optimal.

ased on these expressions, in the following sections we obtain al-

ernative valid formulations of the k -sum approval voting problem

hat we then test experimentally in Section 5 . 

.1. Valid formulations based on subsets of size k 

In this section we propose a first valid formulation for our k -

um approval voting problem which is based on expression (7) .

e formulate it in the following theorem where, for the sake of

implicity, we avoid specifying S ⊂ { 1 , . . . , n } when not necessary. 

heorem 1. An optimal solution of the k-sum approval voting prob-

em can be obtained solving the following integer programming prob-

em. 

in v (9) 

s.t. z i j ≥ p i j (1 − x j ) ∀ i, j (10) 

 i j ≥ (1 − p i j ) x j ∀ i, j (11) 

m ∑ 

j=1 

∑ 

i ∈ S 
z i j ≤ v ∀ S : | S| = k (12) 
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x ∈ { 0 , 1 } m . (13)

Proof. Consider formulation (6) and formula (7) , the problem can
be written as 

min 
x ∈{ 0 , 1 } m 

( 

max 

{ 

m ∑ 

j=1 

max { (k − γ j (S)) x j , γ j (S)(1 − x j ) }| S ⊂ { 1 , . . . , n } , | S| = k 

} ) 

. 

Defining variables z Sj for all S ⊂ { 1 , . . . , n } , | S| = k, and all j , this is

equivalent to 

min v (14)

s.t. z S j ≥ γ j (S)(1 − x j ) ∀ j, ∀ S : | S| = k (15)

z S j ≥ (k − γ j (S)) x j ∀ j, ∀ S : | S| = k (16)

m ∑ 

j=1 

z S j ≤ v ∀ S : | S| = k (17)

x ∈ { 0 , 1 } m . (18)

Next, we can define variables z ij for all i = 1 , . . . , n and for all j =
1 , . . . , m and disaggregate each variable z S j = 

∑ 

i ∈ S z i j , which results

in 

min v (19)

s.t. 
∑ 

i ∈ S 
z i j ≥ γ j (S)(1 − x j ) ∀ j, ∀ S : | S| = k (20)

∑ 

i ∈ S 
z i j ≥ (k − γ j (S)) x j ∀ j, ∀ S : | S| = k (21)

m ∑ 

j=1 

∑ 

i ∈ S 
z i j ≤ v ∀ S : | S| = k (22)

x ∈ { 0 , 1 } m . (23)

We observe that constraints (20) and (21) for all j and S such that

| S| = k, can be replaced by the following disaggregated version 

min v 
s.t. z i j ≥ p i j (1 − x j ) ∀ i, j 

z i j ≥ (1 − p i j ) x j ∀ i, j 

m ∑ 

j=1 

∑ 

i ∈ S 
z i j ≤ v ∀ S : | S| = k 

x ∈ { 0 , 1 } m . 

This concludes the proof. �

Example 1. We illustrate the above approach reformulating the

minimax approval voting problem ( k = 1 ) within this general

framework. 

min v 
z i j ≥ p i j (1 − x j ) ∀ i, j 

z i j ≥ (1 − p i j ) x j ∀ i, j 

m ∑ 

j=1 

z i j ≤ v ∀ i 

x ∈ { 0 , 1 } m . (24)
In the following, we develop a second valid formulation for

he general k -sum approval voting problem applying (6) but using

8) to represent the Hamming distance instead of (7) . 

heorem 2. The following formulation provides a valid representation

f the k-sum approval voting problem. 

in v (25)

.t. 

m ∑ 

j=1 

(k − γ j (S)) x j + 

m ∑ 

j=1 

γ j (S)(1 − x j ) ≤ v ∀ S : | S| = k (26)

 ∈ { 0 , 1 } m . (27)

roof. Applying in formula (6) the representation (8) instead of

7) , the proof follows similarly to that of Theorem 1 . �

Since both formulations (9) –(13) and (25) –(27) have an expo-

ential number of constraints, we propose here two different ap-

roaches to solve these two models. 

A first approach is based on formulation (9) –(13) . Let us assume

hat we embed that formulation in a Branch and Bound scheme

nd let ( ̂  x , ̂  z , ̂  v ) be the current solution in a node of this Branch &

ound tree. 

Procedure for (9) –(13) 

• Compute ˆ r i := 

∑ m 

j=1 ̂  z i j for every i and choose the k

largest. Determine ˆ S according to the k largest ˆ r i for i ∈
{ 1 , . . . , n } . 

• Check if 
∑ 

i ∈ ̂ S ̂
 r i > ̂

 v . In the affirmative case, we need to

add the following constraint related to such 

ˆ S 

∑ 

i ∈ ̂ S 

m ∑ 

j=1 

z i j ≤ v . (28)

Otherwise, i.e., when the answer to the test is no, the

current solution is feasible in the current node. There-

fore, a valid description of the problem was already avail-

able and no more inequalities have to be added. 

A similar scheme can be applied to Problem (25) –(27) . Let ( ̂  x , ̂  v )
e a given feasible solution in a node of its Branch & Bound tree. 

Procedure for (25) –(27) 

• Compute ˆ r i := 

∑ m 

j=1 | ̂ x j − p i j | , for all i = 1 , . . . , n . Deter-

mine ˆ S according to the k largest values of ˆ r i for i ∈
{ 1 , . . . , n } . 

• Check whether 
∑ 

i ∈ ̂ S ̂
 r i > ̂

 v . In the affirmative case we

need to add the following inequality which is a valid cut

that separates ( ̂  x , ̂  v ) 
m ∑ 

j=1 

γ j ( ̂  S )(1 − x j ) + 

m ∑ 

j=1 

(k − γ j ( ̂  S )) x j ≤ v . 

emark 1. Formulation (25) –(27) is at least as good as formulation

9) –(13) . 

The above result can be explained as follows. Let P (25) −(27) and

 (9) −(13) be the polyhedra defining the feasible domains of the con-

inuous relaxation of formulations (25) –(27) and (9) –(13) , respec-

ively. Consider a feasible solution (possibly fractional) (x, v , z) ∈
 (9) −(13) . It follows that its projection onto ( x, v ) belongs to

 (25) −(27) , and the result follows. 

The above result, together with the fact that formulation (25) –

27) has a smaller number of constraints and variables than for-

ulation (9) –(13) , justifies that in our computational experiments

see Section 5 ) we only report results based on formulation (25) –

27) since its performance is superior to the one of (9) –(13) . 
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.2. Valid formulations based on Hamming distance among profiles 

In this section, we derive alternative valid formulations for the

 -sum approval voting problem that do not make explicit use of

ll the possible subsets of { 1 , . . . , n } of cardinality k . For an arbi-

rary subset S of { 1 , . . . , n } , we consider the sum of the Hamming

istances of all P i , i ∈ S , to x as follows 

 S (x ) = 

∑ 

i ∈ S 

m ∑ 

j=1 

| x j − p i j | . 

For a given k , with 1 ≤ k < n , the problem of electing a commit-

ee that minimizes the sum of the k largest Hamming distances

an be formulated as a Mixed Integer Linear Programming (MILP)

roblem, provided that for any given x a permutation σ x such that

 σx (i ) (x ) ≥ d σx (i +1) (x ) , i = 1 , . . . , n − 1 , is fixed. 

in 

k ∑ 

h =1 

d σx (h ) (x ) (29) 

 i j ≥ x j (1 − p i j ) + p i j (1 − x j ) i = 1 , . . . , n, j = 1 , . . . , m (30) 

 i (x ) ≥
m ∑ 

j=1 

z i j i = 1 , . . . , n (31) 

 j ∈ { 0 , 1 } j = 1 , . . . , m. (32) 

Problem (29) –(32) has m binary variables, nm continuous vari-

bles, and O ( nm ) linear constraints. If there is no confusion, in the

ollowing, we simply write d i in place of d i ( x ). 

The above formulation is correct but it is not operational, since

t depends on the valid permutation function σ x ( · ) that sorts the

istances in a non-increasing order. However, it is still possible to

erive alternative valid formulations that do not make explicit use

f that permutation (see Ogryczak and Tamir, 2003; Puerto et al.,

016 ). Indeed, let us consider a new variable t ≥ 0 and a set of n

ariables v i , i = 1 , . . . , n . 

heorem 3. The following is a valid formulation for the general k-

um approval voting problem. 

in kt + 

n ∑ 

i =1 

v i (33) 

.t. v i ≥ d i − t i = 1 , . . . , n (34) 

 i ≥
m ∑ 

j=1 

z i j i = 1 , . . . , n (35) 

 i j ≥ x j (1 − p i j ) + p i j (1 − x j ) i = 1 , . . . , n, j = 1 , . . . , m (36) 

 j ∈ { 0 , 1 } j = 1 , . . . , m (37) 

 ≥ 0 , v i ≥ 0 i = 1 , . . . , n. (38) 

roof. Consider the general formulation (6) . Following the proof in

uerto et al. (2016) , the inner maximum in problem (6) is equiva-

ent to the following 
ax 

n ∑ 

i =1 

d i q i 

n ∑ 

i =1 

q i = k 

q i ∈ { 0 , 1 } i = 1 , . . . , n. (39) 

The above constraint matrix is TU and thus the integrality con-

traints on the variables q i , i = 1 , . . . , n, in problem (39) can be re-

axed to 0 ≤ q i ≤ 1, i = 1 , . . . , n, and the resulting problem has the

ollowing exact dual: 

in kt + 

n ∑ 

i =1 

v i 

s.t. v i ≥ d i − t i = 1 , . . . , n 

v i ≥ 0 i = 1 , . . . , n. (40) 

Notice that, since d i are distances, the coefficients in the objec-

ive function of (39) are non negative and, w.l.o.g., we can set the

ariable t as t ≥ 0. To complete the proof, it suffices to add to the

bove dual problem the constraints (30) –(32) . �

When a constraint on the number C of candidates to be elected

ust be also considered, we can add it to the above program by

ondition 

m 

 

j=1 

x j ≤ C. 

An alternative valid formulation for the general k -sum approval

oting problem can be provided by exploiting the one proposed in

lanco et al. (2014) , as stated in the following theorem. 

heorem 4. The following is a valid formulation for the general k-

um approval voting problem. 

in 

n ∑ 

i =1 

u i + 

k ∑ 

h =1 

v h (41) 

.t. u i + v h ≥ d i i = 1 , . . . , n, h = 1 , . . . , k (42) 

 i ≥
m ∑ 

j=1 

z i j i = 1 , . . . , n (43) 

 i j ≥ x j (1 − p i j ) + p i j (1 − x j ) i = 1 , . . . , n, j = 1 , . . . , m (44) 

 j ∈ { 0 , 1 } j = 1 , . . . , m (45) 

 i ≥ 0 i = 1 , . . . , n (46) 

 h ≥ 0 h = 1 , . . . , k. (47) 

roof. Consider the general formulation (6) . We introduce the fol-

owing binary variables y ih , i = 1 , . . . , n and h = 1 , . . . , k, such that,

iven x , y ih = 1 if the distance d i of voter i is in position h ≤ k in

he non-increasing ordering, and y ih = 0 otherwise. Following the

roof in Blanco et al. (2014) , for a given vector x , the sum of the k

argest distances can be written 
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k ∑ 

h =1 

d σx (h ) (x ) = max 
n ∑ 

i =1 

k ∑ 

h =1 

d i y ih 

s.t. 
n ∑ 

i =1 

y ih ≤ 1 h = 1 , . . . , k 

k ∑ 

h =1 

y ih ≤ 1 i = 1 , . . . , n 

y ih ∈ { 0 , 1 } i = 1 , . . . , n, h = 1 , . . . , k. 

(48)

In fact, problem (48) is a transportation problem, so that we

can relax the binary variables 0 ≤ y ih ≤ 1. Taking the dual of (48) we

obtain 

k ∑ 

h =1 

d σx (h ) (x ) = min 

n ∑ 

i =1 

u i + 

k ∑ 

h =1 

v h 

s.t. u i + v h ≥ d i i = 1 , . . . , n, h = 1 , . . . , k 

u i , v h ≥ 0 i = 1 , . . . , n, h = 1 , . . . , k. 

(49)

To complete the proof, it suffices to add to the above dual prob-

lem the constraints (30) –(32) . �

Remark 2. The equivalence between formulations (33) –(38) and

(41) –(47) , in Theorems 3 and 4 , implies that the formulation in

Theorem 4 admits, at least, an optimal solution in the form v ∗
h 

= t ∗

for all h = 1 , . . . , k and u ∗
i 

= max { 0 , t ∗} , for all i = 1 , . . . , n that is

also optimal for the formulation of Theorem 3 . 

Proposition 1. The formulations (25) –(27) , (33) –(38) and (41) –(47)

produce the same LP bound. 

Proof. Let us consider a generic ˆ x ∈ [0 , 1] m . From our discussion

above, it is clear that, fixing ˆ x , the objective function value of all

problems (25) –(27), (33) –(38) and (41) –(47) equals 
∑ k 

h =1 d σ ˆ x (h ) 
( ̂  x ) ,

where d σ ˆ x (1) 
( ̂  x ) ≥ . . . ≥ d σ ˆ x (n ) 

( ̂  x ) . Hence, the three problems return

the same objective function value for each feasible solution of the

continuous polytope and therefore this proves the claim. �

4. Strengthening the formulations 

The above MIP formulations are exact but still one can observe

that they have some GAP at the root node of the Branch & Bound

tree (see Section 5 ) although this gap is always rather small. The

goal of this section is to develop some preprocessing strategies

and valid inequalities that allow to improve the polyhedral descrip-

tion of the different formulations, and get a better bound for this

GAP with a consequent gain in computational times. In the rest of

the paper we consider the unconstrained version of the k -sum ap-

proval voting problem, i.e., the size of the committee is not fixed. 

First of all, we advance an easy preprocessing that allows fixing

some variables either to zero or to one before the global search

starts. The rationale behind this is the following. For a candidate j

to be member of at least one committee it is required that, at least

for a subset S of size k < n , there is a majority of voters that ap-

proves him, that is, γ j ( S ) ≥
 k /2 � . Therefore, if the total number of

voters preferring candidate j, γ j , satisfies γ j ≥ n − 
 k/ 2 � this can-

didate will be always included in any committee and thus we can

set x j = 1 . This justifies (50) . On the other hand, if candidate j is

only preferred by less than 
 k /2 � voters, he will be never included

in a k -sum committee and thus x j = 0 . This justifies (51) 

x j = 1 if γ j ≥ n − 
 k/ 2 � (50)

x j = 0 if γ j ≤ 
 k/ 2 � . (51)
ote that this preprocessing is more interesting for large values of

 ’s. 

In the following, we also develop a procedure for the efficient

olution of the ˆ k -sum approval voting problem for ˆ k fixed that

orks in an iterative fashion starting from k = n and solving a k -

um approval voting problem for all k = n, . . . , ̂  k . This procedure

s based on valid inequalities involving optimal objective function

alues of the k -sum and the (k + 1) -sum approval voting problems

or any k . 

First, we analyze whether inequalities (20) –(22) can be adapted

o the formulations described in Section 3.2 , as valid cuts. Clearly,

hey are valid inequalities but, as we will see, they do not improve

uch formulations. 

Consider, first, formulation (33) –(38) . Note that the cuts in

20) –(22) consist in aggregated forms of constraints (36), (34) and

35) , respectively. 

 i j ≥ p i j (1 − x j ) ∀ i, j ⇒ 

∑ 

i ∈ S 
z i j ≥ γ j (S)(1 − x j ) ∀ j 

z i j ≥ (1 − p i j ) x j ∀ i, j ⇒ 

∑ 

i ∈ S 
z i j ≥ (k − γ j (S)) x j ∀ j 

ence, the use of them as valid inequalities is not useful. Fur-

hermore, constraint 
∑ m 

j=1 

∑ 

i ∈ S z i j ≤ kt + 

∑ 

i ∈ S v i can be obtained

y means of a natural aggregation of (34) and (35) . 

In light of the above results, we develop valid inequalities based

n solutions of the k -sum approval voting problem for different k

alues to be used in a strategy that solves problems for different k

onsecutively. 

In order to present the result some additional notation is re-

uired. For a given k , let us denote by z ( k ) and x ( k ) the optimal

bjective function value and an optimal solution of the k -sum ap-

roval voting problem, respectively. 

roposition 2. For a given instance ( N, A, P ) of the k-sum approval

oting problem the following inequality holds 

(k ) ≥ k 

k + 1 

z (k + 1) . 

roof. By definition, z ( k ) is the sum of the k largest Hamming dis-

ances of the voters’ profiles with respect to x ( k ). It means that

istance in position k + 1 , d σx (k ) (k +1) (x (k )) , satisfies 

 ≤ d σx (k ) (k +1) (x (k )) ≤ z(k ) 

k 
. 

hus, we can conclude that x ( k ) is a feasible solution for the (k +
) -sum problem and moreover, there exists an upper bound for

(k + 1) given by 

(k + 1) ≤ z(k ) + 

z(k ) 

k 
. (52)

he above expression gives a lower bound for z ( k ), provided that

(k + 1) is known 

(k ) ≥ k 

k + 1 

z (k + 1) . (53)

�

Since, for a given ( N, A, P ) we can solve the different k -sum

oting problems in any order, after the above result, it is advis-

ble to do it following the non-increasing sequence k = n, . . . , 1 .

ndeed, as shown in Section 2 , solving the problem for k = n (i.e.,

he minisum problem) is polynomial. Once this solution and ob-

ective function value are found, they can be used to improve the

olution for k = n − 1 and so on. 

We now illustrate an iterative scheme for efficiently solving the

 -sum approval voting problem following the strategies illustrated

bove in this section. This approach has been effectively used in

ur computational experiments. 
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Table 1 

Summary for n = 50 , uniform data. 

Form. Time (s) GAP (%) Nodes %Solved root %Fixed 

Avg Max Avg Max Avg Max 

(25) –(27) 65.63 4396.86 0.22 2.63 7388.30 1,092,091 15.89 13.92 

(33) –(38) 0.13 2.24 0.22 2.63 276.67 23,170 62.74 13.92 

(41) –(47) 0.58 19.99 0.22 2.63 1128.03 158,152 54.17 13.92 

Table 2 

Summary for n = 50 , biased data. 

Form. Time (s.) GAP (%) Nodes %Solved root %Fixed 

Avg Max Avg Max Avg Max 

(25) –(27) 12.34 258.85 0.35 3.13 973.61 52,028 17.83 29.42 

(33) –(38) 0.06 0.40 0.35 3.13 15.76 959 68.91 29.42 

(41) –(47) 0.17 1.23 0.35 3.13 71.33 10,914 54.86 29.42 
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Table 3 

Valid inequalities generated in a Branch & Bound tree for solving formulation (25) –

(27) with n = 50 and for uniform and biased data. 

Data Avg # Cuts Max # Cuts Avg # Cuts node Max # Cuts node 

Uniform 97,963.15 9,428,791 124.43 463 

Biased 7390.41 315,094 63.80 4 4 4 
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1. Solve the problem for k = n, i.e., the minisum problem. Its op-

timal solution, x ( n ), is easily seen to be 

x j = 1 if γ j ≥ n − 
 n/ 2 � (54) 

x j = 0 if γ j < 
 n/ 2 � . (55) 

Next, obtain z ( n ), the optimal objective function value of this

problem. 

2. From k = n − 1 to k = 1 set the following valid inequalities: ⌈
k 

k + 1 

z(k + 1) 

⌉
≤ z(k ) ≤ z(k + 1) − d (k +1) (x (k + 1)) . 

From the discussion above, it is clear that, after solving the

roblem with W (k + 1) , we have the lower bound (53) on z ( k )

hat we can use as a valid inequality when solving the problem

ith weighting vector W ( k ). On the other hand, (52) provides an

pper bound on z ( k ) by z(k + 1) . We will show in our computa-

ional experiments section that the improvements obtained by the

pplication of these strategies are remarkable (see Section 5 ). In-

eed, our computational experiments show that, even if the aim

ould be solving a problem for a given k ′ , it is worth solving be-

ore the same instance for k = n, . . . , k ′ + 1 since, using the bounds

nd the initial solution provided for each k on the problem for

 − 1 , produces an overall time saving. We observe that solving

irectly the problem for k = k ′ , without exploiting the result in

roposition 2 , is more time consuming than solving the problems

or k = n, . . . , k ′ + 1 by the iterative scheme illustrated above (de-

ived from Proposition 2 ). This can be easily checked by adding

p all the computing times needed for solving all problems in-

olved in the above scheme up to k ′ , and comparing the result-

ng computing time to the cpu time required to solve a single

roblem for the given k ′ . Actually, it may be even worse since, in

any cases, solving directly the problem for k ′ may lead to reach-

ng the maximum allowed computing time without having found

ven a feasible solution. On the other hand, the approach based on

roposition 2 solves the problem rather efficiently. 

. Computational results 

This section reports on the results of an exhaustive compu-

ational test carried out on two sets of instances and our three

ormulations with and without implementing the improvement

trategies illustrated in Section 4 . We have tested data sets gen-

rated according to the scheme proposed in LeGrand et al. (2007) .

hat paper distinguishes between uniform and biased data. Uniform

ata are obtained by generating all profiles as follows. For each el-

ment in the profile (candidate), set 1 (the candidate is approved)
r 0 (not approved) according to a random variable that assumes

alues 0 and 1 with equal probability. Bias data are obtained by

enerating three sets of profiles separately. First, two possible ap-

roval probabilities, denoted by π1 and π2 , are generated by se-

ecting them from a random variable that is distributed uniformly

n [0, 1]. Then, for the 40% of the profiles each element is gener-

ted by a random variable that assumes value 1 with probability

1 and value 0 with probability 1 − π1 . Another 40% is generated

n the same way, but using π2 in place of π1 . The remaining 20%

s generated as in the case of uniform data (see LeGrand et al.,

007 ). Overall, we have solved 22,750 instances with the different

ombinations for n, m, k , and uniform and biased data. 

In a preliminary analysis, we wanted to test the performance of

ur three formulations in instances of small size ( n = 50 and differ-

nt values for m = 30 , 35 , 40 , 45 , 50 , 55 , 60 ), in order to make the

ecision of which are the formulations to be tested on instances

f larger size. Tables 1 and 2 report the average results of all the

750 instances for n = 50 for the uniform and biased data (5 ran-

omly generated instances for each m and k = 1 , . . . , 50 ). The re-

ults are organized as follows. Each row reports information about

 different formulation that is indicated by its references. All in-

tances were solved to optimality by all formulations. For each

ormulation we include information about average and maximum

ime expressed in seconds (Time (s)), average and maximum per-

ent gap at the root node (GAP (%)), average and maximum num-

er of nodes in the searching tree (Nodes), percentage of instances

olved at the root node (%Solved root) and percentage of binary

ariables fixed with the preprocessing (%Fixed). 

For formulation (25) –(27) , we also report information on the

verage and maximum number of cuts ( # Cuts), and the average

nd maximum number of cuts in each node ( # Cuts node) (see

able 3 ). This information is relevant to understand the number

f constraints, out of the exponentially many in the formulation,

hich are needed to have a valid representation of the problem at

ach node of the Branch & Bound tree. 

We have also tested empirically (see Tables 1 and 2 ), that the

ap at the root node coincides for the three formulations. This con-

rms that the three formulations are equivalent in terms of LP gap
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Table 4 

Summary for n = 100, uniform data. 

Form. Time (s) GAP (%) Nodes %Solved root % Fixed 

Avg Max Avg Max Avg Max 

m = 30 (41) –(47) 3.35 23.66 0.17 0.84 1565.53 28,751 46.0 9.32 

(33) –(38) 0.37 4.04 0.17 0.84 1488.07 36,793 46.4 9.32 

m = 35 (41) –(47) 4.39 55.32 0.17 2.50 2695.97 12,6951 43.8 8.87 

(33) –(38) 0.48 10.47 0.17 2.50 2334.13 96,381 44.8 8.87 

m = 40 (41) –(47) 5.40 93.11 0.14 1.14 4149.20 158,828 44.4 8.42 

(33) –(38) 0.70 12.53 0.14 1.14 3674.94 121,300 45.0 8.42 

m = 45 (41) –(47) 13.40 251.75 0.13 2.00 11,463.60 657,0 0 0 42.6 9.44 

(33) –(38) 1.56 65.41 0.13 2.00 9924.58 578,547 43.6 9.44 

m = 50 (41) –(47) 18.30 532.31 0.12 0.93 19,495.08 781,787 43.6 12.38 

(33) –(38) 2.48 78.21 0.12 0.93 17,922.55 605,694 45.2 12.38 

m = 55 (41) –(47) 57.27 1652.28 0.10 0.49 53,060.66 1,875,622 41.0 7.55 

(33) –(38) 5.12 131.90 0.10 0.49 45,278.16 1,256,747 40.2 7.55 

m = 60 (41) –(47) 41.62 2306.34 0.11 1.56 68,105.88 7,640,315 40.0 10.30 

(33) –(38) 5.78 382.24 0.11 1.56 47,840.94 4,036,987 39.6 10.30 

Table 5 

Summary for n = 100, biased data. 

Form. Time (s) GAP (%) Nodes %Solved root %Fixed 

Avg Max Avg Max Avg Max 

m = 30 (41) –(47) 0.58 1.96 0.30 3.13 48.83 2215 48.2 28.33 

(33) –(38) 0.08 0.42 0.30 3.13 44.13 2013 48.6 28.33 

m = 35 (41) –(47) 0.63 2.02 0.28 2.63 77.93 4147 43.6 30.07 

(33) –(38) 0.10 0.93 0.28 2.63 81.37 6788 45.6 30.07 

m = 40 (41) –(47) 0.76 2.47 0.25 2.38 193.00 9921 42.0 26.62 

(33) –(38) 0.13 0.91 0.25 2.38 177.40 8989 48.4 26.62 

m = 45 (41) –(47) 0.69 2.23 0.24 2.17 145.96 8026 42.4 27.24 

(33) –(38) 0.12 0.81 0.24 2.17 121.17 5985 46.0 27.24 

m = 50 (41) –(47) 0.69 2.93 0.23 2.00 263.15 15,166 44.6 29.21 

(33) –(38) 0.13 0.93 0.23 2.00 202.81 6125 50.2 29.21 

m = 55 (41) –(47) 0.81 6.33 0.21 1.23 497.78 25,672 46.6 28.69 

(33) –(38) 0.17 3.33 0.21 1.23 443.27 26,845 52.2 28.69 

m = 60 (41) –(47) 1.06 39.10 0.22 1.67 1187.28 221,519 35.4 28.51 

(33) –(38) 0.26 24.92 0.22 1.67 1136.49 234,681 39.0 28.51 
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and explains the rather small integrality gaps of these formula-

tions. 

The conclusion of the above tables is that formulation (25) –(27)

is as stronger as the other two in terms of gap, but its performance

is inferior in terms of time and number of problems solved at the

root node. For this reason, we have decided to carry out the final

test for larger instances only for formulations (33) –(38) and (41) –

(47) . Therefore, we evaluate and compare the performance of for-

mulations (33) –(38) and (41) –(47) on medium size instances, i.e.,

those with n = 10 0 , 20 0 . 

Tables 4 and 5 report our results for the two types of data sets,

i.e., uniform and biased, for n = 100 . All the information is orga-

nized as in previous Tables 1 and 2 . Again, all problems are solved

at optimum. 

The conclusions from Tables 4 and 5 are the following. Formu-

lation (33) –(38) is one order of magnitude faster than (41) –(47) .

For instance, the average time for the largest instance sizes ( n =
100 , m = 60 ), solved with (33) –(38) , is about 5.78 s and the max-

imum cpu time is 382.24 s. The same instances solved with (41) –

(47) take an average and maximum time of 41.62 and 2306.34 s,

respectively. This fact can be explained by the smaller number of

variables and constraints required by formulation (33) –(38) with

respect to (41) –(47) . The remaining factors (GAP, Nodes, %Solved

and %Fixed) are quite similar in both cases. In fact, as we have

seen theoretically, both formulations are equivalent in terms of LP

gap and they always fix the same number of binary variables. It

is also very interesting to test the practical performance of a naïve

approximation algorithm based on using the solutions of the lin-

ear relaxation, as proposed for instance in Amanatidis et al. (2015) .

One can easily bound from above the empirical performance ra-
io, LPv al 
optv al 

, of any of our formulations based on the relative gap

 Rgap := 

optv al − LP v al 

optv al 
∗ 100% ). Indeed, optv al 

LPv al 
≤ 100 

100 −Rgap . Actually,

ince the largest relative gap is below 3.13% (see Table 4 ), this re-

ults, in the worst case ( n = 100 , m = 30 ), with an empirical per-

ormance ratio bounded above by 1.03. 

Next, we further test our best formulation, namely (33) –(38) ,

n instances with increasing size in order to explore the size limit

hat can be solved within the time limit of 7200 s. Tables 6 and

 report our results. As can be observed in these tables, there is a

ifference in the performance with respect to uniform and biased

ata. For uniform data we get the optimum within the fixed time

imit already for n = 150 . For biased data we are able to solve all

nstances to optimality within the time limit with instance size up

o n = 200 . The reason for this clear difference relies on the fact

hat the preprocessing (50) and (51) is much more efficient for bi-

sed data where a greater percentage of variables are fixed either

o zero or to one. Indeed, this percentage is on average of 24.79%

or biased data with n = 200 as compared to only 7.34% for the

niform data for n = 150 . 

In order to analyze the performance of formulation (33) –(38) ,

n Fig. 1 we visualize two measures of efficiency computed for the

ifferent k = 1 , . . . , 100 . For each k , we show the cpu time required

n average for solving the 35 instances with n = 100 (5 randomly

enerated instances for each value of m ∈ {30, 35, 40, 45, 50, 55,

0}). We also provide the number of instances solved at the root

ode (without branching). We have observed that the behavior is

imilar for the different values of n . For this reason, we show only

he plots related to the case of n = 100 . Fig. 1 a and b refer to uni-

orm data, while Fig. 1 c and d refer to biased data. 
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Table 6 

Summary for n = 200, biased data (solved to optimality within 7200 s). 

Form. Time (s) GAP (%) Nodes %Solved root %Fixed 

Avg Max Avg Max Avg Max 

m = 30 (33) –(38) 0.44 9.12 0.12 1.85 819.95 35,683 60.6 29.83 

m = 35 (33) –(38) 2.80 39.15 0.12 1.59 7962.11 162,887 38.5 14.09 

m = 40 (33) –(38) 6.27 225.75 0.10 1.59 22,843.11 1,165,252 56.1 24.90 

m = 45 (33) –(38) 21.63 985.73 0.09 1.33 76,974.33 4,847,789 48.6 27.74 

m = 50 (33) –(38) 42.09 1129.91 0.08 0.93 143,305.51 4,607,534 41.7 24.76 

m = 55 (33) –(38) 50.93 5070.65 0.09 1.61 186,926.77 28,259,032 40.7 20.79 

m = 60 (33) –(38) 49.97 5409.05 0.08 0.81 207,304.41 29,489,376 56.8 31.45 

Table 7 

Summary for n = 150, uniform data (solved to optimality within 7200 s). 

Form. Time (s) GAP (%) Nodes %Solved root %Fixed 

Avg Max Avg Max Avg Max 

m = 30 (33) –(38) 1.20 11.01 0.15 0.93 4302.39 60,713 28.27 7.44 

m = 35 (33) –(38) 2.74 45.11 0.15 2.38 11,338.78 237,964 30.80 6.97 

m = 40 (33) –(38) 7.87 138.90 0.13 0.62 36,490.51 768,328 28.80 7.43 

m = 45 (33) –(38) 12.64 302.69 0.12 1.92 56,540.63 1,886,774 27.33 7.61 

m = 50 (33) –(38) 44.67 777.99 0.11 0.89 211,780.07 4,787,806 28.67 7.43 

m = 55 (33) –(38) 81.99 4068.90 0.10 1.08 419,709.27 27,576,236 23.87 7.48 

m = 60 (33) –(38) 209.87 6664.97 0.10 0.76 1,023,055.10 36,286,662 24.67 6.99 

Fig. 1. Efficiency measures vs. k for formulation (33) –(38) with n = 100 . 
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Analyzing the figures, we conclude that the general behavior

s rather similar for uniform and biased data. Regarding the com-

uting time for solving the problems, we observe that it increases

hen k decreases from k = n until a certain threshold (which de-

ends of the type of data, namely k ∈ (15, 30) for uniform data and

 ∈ (9, 20) for biased data) and then the time decreases with k un-

il k = 1 . This trend can be explained from the combinatorics of the

bjective function which relates to 
(

n 
k 

)
. With respect to the number

f instances solved at the root node, the performance is also simi-

ar. This number decreases with k from k = n until a certain value

which again depends on the type of data, k ≈ 70 and k ≈ 28, for

niform and biased data, respectively) and then it increases with k

p to k = 1 . 
Focusing on Fig. 1 a and c, one can also find additional

vidence of the usefulness of the procedure following from

roposition 2 and discussed at the end of Section 4 . 

. Minimizing the h smallest distances 

In this section, we briefly discuss the problem of minimiz-

ng the sum of the h smallest Hamming distances already intro-

uced in Section 2 . In Amanatidis et al. (2015) this problem has

een already considered in the approval voting application con-

ext, and the authors prove that, when the OWA vector is non-

ecreasing, that is, the weighting vector is of the form M(n − h ) =
(0 , . . . , 0 , 1 , . . . , 1) , with h the number of ones, 1 ≤ h < n , the win-
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ning committee can be found in polynomial time for a fixed value

of h . They suggest an enumerative approach based on the solu-

tion of 
(

n 
n −h 

)
= 

(
n 
h 

)
minisum problems that is obviously not ef-

ficient even for a fixed h , and not polynomial if h is part of

the input. Using arguments similar to those in Section 2 for the

problem of minimizing the sum of the k largest Hamming dis-

tances, also the problem of minimizing M(n − h ) for a fixed h (see

Amanatidis et al. (2015) ) can be proved to be polynomial applying

Linear Programming. 

For a fixed h , the general problem can be stated as 

min 

x ∈{ 0 , 1 } m 
(

min 

{
d S (x ) | S ⊂ { 1 , . . . , n } , | S| = h 

})
. (56)

We can switch the two min operators, thus obtaining 

min 

S⊂{ 1 , ... ,n } , | S| = h 
(

min 

x ∈{ 0 , 1 } m 
{

d S (x ) 
})

. (57)

For a given subset S ⊂ { 1 , . . . , n } , the inner minimum in prob-

lem (57) corresponds to the minisum problem 

min 

m ∑ 

j=1 

γ j (S)(1 − x j ) + 

m ∑ 

j=1 

(h − γ j (S)) x j 

s.t. 0 ≤ x ≤ 1 , 

which is polynomially solvable. Then, considering all the 
(

n 
n −h 

)
=(

n 
h 

)
subsets of cardinality n − h, for a fixed h , the problem can be

solved by a sequence of LPs. 

7. Concluding remarks 

In this paper we studied two versions of the k -sum approval

voting problem, one minimizing the sum of the k largest distances

from a voter profile to a committee, the other minimizing the sum

of the h smallest distances. The latter approach for approval voting

elections was not deeply analyzed in the literature, but it is worth

remarking that its application in this context is meaningful. In fact,

the problem can be stated as follows: elect a committee minimiz-

ing the sum of the h smallest Hamming distances from the voters’

profiles. As already observed in Amanatidis et al. (2015) , the ap-

plication is significant for small values of n − h, say n − h = 1 or

n − h = 2 . Actually, in these cases, the assumption is that the first

one or two maximum distances do not play a significant role in

the selection of the committee, and this is true especially when

the population of voters is extremely large. The idea is that there

will be always some voters whose preferences are completely dis-

joint from those of the majority of the others. This is, in fact, a way

of considering such voters’ profiles as outliers . But, in our opinion,

there are additional cases in which the application is meaningful,

namely, for every choice of h such that n − h ≤ n 
2 − 1 . Under this

condition, the approval voting problem consists of taking into ac-

count only the preferences of the absolute majority of the voters

( h ≥ n 
2 + 1 ), with the aim of selecting the committee correspond-

ing to the boolean vector x ∗ for which the sum of the Hamming

distances w.r.t. the h considered profiles is minimized. 

The two problems following the OWA approaches for approval

voting studied in this paper can be seen as two different ways of

facing the same problem, but giving more importance to one of

the two principles that are at the basis of any democratic election.

The problem with weighting vector W (k ) = (1 , . . . , 1 , 0 , . . . , 0) im-

plements the idea that representation must be maximized. If, on

the other hand, one wants to give more importance to govern-

ability , the minisum approach (with weighting vector M(n − h ) =
(0 , . . . , 0 , 1 , . . . , 1) ) can be pursued with a suitable choice of h ,

since it is able to guarantee a strong and cohesive consensus. This

strength can be enforced by increasing the value of h . We leave

the choice of which is the best voting rule for a country to its law-

makers, who will be able to choose the best rule, according to the
pecific political and social situation in which the election takes

lace. 

Going back to our theoretical considerations, to the best of our

nowledge, the computational complexity of the minsum prob-

em with weighting vector M(n − h ) = (0 , . . . , 0 , 1 , . . . , 1) when h

s part of the input is still an open problem. In our opinion this is

n interesting issue that will be the focus of our future work. 
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